Flood risks/Description: Difference between revisions

From IMAGE
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
|Reference=Loveland et al., 2000; Van Beek et al., 2011; Wada et al., 2011; Hinkel and Klein, 2009;
|Reference=Loveland et al., 2000; Van Beek et al., 2011; Wada et al., 2011; Hinkel and Klein, 2009;
|Description====Model core===
|Description====Model core===
[[GLOFRIS model|GLOFRIS]] estimates the effect of land cover and climate change on global flood risks in river catchments and coastal areas ([[Winsemius et al., 2012]]; [[Ward et al., 2013]]). Global flood risks are expressed as the projected number of people affected annually and as GDP value. GLOFRIS uses land-cover input from IMAGE and climate time series, such as the IPCC GCM projections. These input data drive the global hydrological model, [[PCR-GLOBWB model|PCR-GLOBWB]], the computational core of the module. PCR-GLOBWB calculates where and when flooding events may occur, and calculates the inundation extent and inundation depth needed to estimate flood risks. PCR-GLOBWB has features, namely daily time steps and proper accounting of the relationship between non-linear soil moisture and run-off, that make it appropriate for simulating flooding events. The spatial resolution currently used by the model is 0.5x0.5 degrees. The model steps of GLOFRIS are shown in Figure Flowchart.
[[GLOFRIS model|GLOFRIS]] estimates the effect of land cover and climate change on global flood risks in river catchments and coastal areas ([[Winsemius et al., 2012]]; [[Ward et al., 2013]]). Global flood risks are expressed as the projected number of people affected annually and as GDP value. GLOFRIS uses land-cover input from IMAGE and climate time series, such as the IPCC GCM projections. These input data drive the global hydrological model, [[PCR-GLOBWB model|PCR-GLOBWB]], the computational core of the module. PCR-GLOBWB calculates where and when flooding events may occur, and calculates the inundation extent and inundation depth needed to estimate flood risks. PCR-GLOBWB has features, namely daily time steps and proper accounting of the relationship between non-linear soil moisture and run-off, that make it appropriate for simulating flooding events. The spatial resolution currently used by the model is 0.5x0.5 degrees. The model steps of GLOFRIS are shown in the flowchart.


===Land cover===
===Land cover===
Line 14: Line 14:
GLOFRIS estimates flood risk on two scales 0.5x0.5 degrees for global analyses, and 1x1 km2 for specific case studies. On a global scale, the extreme value probability distribution is directly combined with data on population and GDP, using a linear flood level–damage relationship. Thus for each year of simulation, the most extreme water level and inundated proportion from PCR-GLOBWB is used to calculate the maximum damage (in GDP or population) per grid cell.  
GLOFRIS estimates flood risk on two scales 0.5x0.5 degrees for global analyses, and 1x1 km2 for specific case studies. On a global scale, the extreme value probability distribution is directly combined with data on population and GDP, using a linear flood level–damage relationship. Thus for each year of simulation, the most extreme water level and inundated proportion from PCR-GLOBWB is used to calculate the maximum damage (in GDP or population) per grid cell.  


An algorithm is implemented to scale down the 0.5x0.5 degrees maps of the extent and depth of annual maximum inundation to 1x1 km2, using a high-resolution digital elevation model. A scale down is needed because the spatial variability of flood hazards and flood exposure may be large and not well represented on the coarser scales in IMAGE and PCR-GLOBWB. A more accurate estimation of flood risk is obtained by converting the results to a higher resolution. The downscaling procedure may also include the risk of coastal flooding (see Figure Flowchart, bottom).
An algorithm is implemented to scale down the 0.5x0.5 degrees maps of the extent and depth of annual maximum inundation to 1x1 km2, using a high-resolution digital elevation model. A scale down is needed because the spatial variability of flood hazards and flood exposure may be large and not well represented on the coarser scales in IMAGE and PCR-GLOBWB. A more accurate estimation of flood risk is obtained by converting the results to a higher resolution. The downscaling procedure may also include the risk of coastal flooding (see the flowchart, bottom).


===Downscaling===
===Downscaling===
For scaling down in river catchments, annual extreme values of inundation depths and proportions are transformed to bank-full volumes and excess volumes per 0.5 degree cell. The bank-full volume represents the volumetric capacity of a river channel in a grid cell and is estimated according to flood volume in a user-defined return period in which flood volumes do not exceed the bank-full volume (return period threshold in Figure Flowchart, bottom) under current climate and land-cover conditions. The excess bank-full volume for each year is scaled down by estimating a water level from identified river pixels. This is determined by the user-defined stream threshold (see Figure Flowchart, bottom) that generates a flood volume in the surrounding connected pixels, resulting in the same flood volume estimated from the 0.5x0.5 degree results. The method is mass conservative with respect to the PCR-GLOBWB results on 0.5x0.5 degree cells.  
For scaling down in river catchments, annual extreme values of inundation depths and proportions are transformed to bank-full volumes and excess volumes per 0.5 degree cell. The bank-full volume represents the volumetric capacity of a river channel in a grid cell and is estimated according to flood volume in a user-defined return period in which flood volumes do not exceed the bank-full volume (return period threshold in the flowchart, bottom) under current climate and land-cover conditions. The excess bank-full volume for each year is scaled down by estimating a water level from identified river pixels. This is determined by the user-defined stream threshold (see the flowchart, bottom) that generates a flood volume in the surrounding connected pixels, resulting in the same flood volume estimated from the 0.5x0.5 degree results. The method is mass conservative with respect to the PCR-GLOBWB results on 0.5x0.5 degree cells.  


===Coastal flood===
===Coastal flood===

Revision as of 09:13, 24 June 2014

GLOFRIS, the flood risk model in IMAGE 3.0
Flowchart Flood risks. See also the Input/Output Table on the introduction page.

Model description of Flood risks