Browse data: IMAGE publication

Jump to navigation Jump to search
IMAGE publication > Period : 2000 and before or 2016 up to today

Click on one or more items below to narrow your results.

Author:
Period: (Click arrow to add another value)

Showing below up to 194 results in range #1 to #194.

View (previous 750 | next 750) (20 | 50 | 100 | 250 | 500)

  1. Alcamo and Kreileman, 1996 (J. Alcamo, E. Kreileman (1996). Emission scenarios and global climate protection. Global Environmental Change, 6(4), pp. 305-334, doi: http://dx.doi.org/10.1016/S0959-3780(96)00030-1.)
  2. Alcamo et al., 1994a (J. Alcamo, G. J. J. Kreileman, M. S. Krol, G. Zuidema (1994). Modeling the global society-biosphere-climate system: Part 1: Model description and testing. Water, Air, & Soil Pollution, 76(1-2), pp. 1-35, doi: http://dx.doi.org/10.1007/BF00478335.)
  3. Alcamo et al., 1994b (J. Alcamo, G. J. van den Born, A. F. Bouwman, B. J. de Haan, K. K. Goldewijk, O. Klepper, J. Krabec, R. Leemans, J. G. J. Olivier, A. M. C. Toet, H. J. M. de Vries, H. J. van der Woerd (1994). Modeling the global society-biosphere-climate system: Part 2: Computed scenarios. Water, Air, & Soil Pollution, 76(1-2), pp. 37-78, doi: http://dx.doi.org/10.1007/BF00478336.)
  4. Alcamo et al., 1995a (J. Alcamo, M. Krol, R. Leemans (1995). Stabilizing greenhouse gases: Global and regional consequences. Studies in Environmental Science, 65(PART A), pp. 135-149, doi: http://dx.doi.org/10.1016/S0166-1116(06)80201-3.)
  5. Alcamo et al., 1995b (J. Alcamo, C. Battjes, G. J. Van Den Born, A. F. Bouwman, B. J. De Haan, K. Klein Goldewijk, O. Klepper, G. J. J. Kreileman, M. Krol, R. Leemans, J. G. Van Minnen, J. G. J. Olivier, H. J. M. De Vries, A. M. C. Toet, R. A. Van Den Wijngaart, H. J. Van Der Woerd, G. Zuidema (1995). Overview of IMAGE 2.0: An integrated model of climate change and the global environment. Studies in Environmental Science, 65(PART B), pp. 1395-1399, doi: http://dx.doi.org/10.1016/S0166-1116(06)80178-0.)
  6. Alcamo et al., 1995c (J. Alcamo, M. Krol, M. Posch (1995). An integrated analysis of sulfur emissions, acid deposition and climate change. Water, Air, & Soil Pollution, 85(3), pp. 1539-1550, doi: http://dx.doi.org/10.1007/BF00477200.)
  7. Alcamo et al., 1996a (J. Alcamo, E. Kreileman, R. Leemans (1996). Global models meet global policy. Global Environmental Change, 6(4), pp. 255-259.)
  8. Alcamo et al., 1996b (J. Alcamo, G. J. J. Kreileman, J. C. Bollen, G. J. Van Den Born, R. Gerlagh, M. S. Krol, A. M. C. Toet, H. J. M. De Vries (1996). Baseline scenarios of global environmental change. Global Environmental Change, 6(4), pp. 261-303, doi: http://dx.doi.org/10.1016/S0959-3780(96)00026-X.)
  9. Alexander et al., 2017 (P. Alexander, R. Prestele, P. H. Verburg, A. Arneth, C. Baranzelli, F. Batista e Silva, C. Brown, A. Butler, K. Calvin, N. Dendoncker, J. C. Doelman, R. Dunford, K. Engström, D. Eitelberg, S. Fujimori, P. A. Harrison, T. Hasegawa, P. Havlik, S. Holzhauer, F. Humpenöder, C. Jacobs-Crisioni, A. K. Jain, T. Krisztin, P. Kyle, C. Lavalle, T. Lenton, J. Liu, P. Meiyappan, A. Popp, T. Powell, R. D. Sands, R. Schaldach, E. Stehfest, J. Steinbuks, A. Tabeau, H. van Meijl, M. A. Wise, M. D. A. Rounsevell (2017). Assessing uncertainties in land cover projections. Global Change Biology, 23(2), pp. 767-781, doi: http://dx.doi.org/10.1111/gcb.13447.)
  10. Bakema et al., 1994 (A. H. Bakema, K. F. de Boer, L. C. Braat, R. M. Kok, R. Meijers, J. G. van Minnen (1994). EXPECT: A concise simulation system for environmental policy analysis. Ecological Modelling, 75-76(C), pp. 553-561, doi: http://dx.doi.org/10.1016/0304-3800(94)90048-5.)
  11. Barbarossa et al., 2017 (V. Barbarossa, M. A. J. Huijbregts, A. J. Hendriks, A. H. W. Beusen, J. Clavreul, H. King, A. M. Schipper (2017). Developing and testing a global-scale regression model to quantify mean annual streamflow. Journal of Hydrology, 544, pp. 479-487, doi: http://dx.doi.org/10.1016/j.jhydrol.2016.11.053.)
  12. Batjes and Bouwman, 1989 (N. H. Batjes, A. F. Bouwman (1989). JAMPLES: a computerized land evaluation system for Jamaica. Land qualities in space and time. Proc. ISSS symposium, Wageningen, 1988, pp. 257-260.)
  13. Bauer et al., 2017 (N. Bauer, K. Calvin, J. Emmerling, O. Fricko, S. Fujimori, J. Hilaire, J. Eom, V. Krey, E. Kriegler, I. Mouratiadou, H. Sytze de Boer, M. van den Berg, S. Carrara, V. Daioglou, L. Drouet, J. E. Edmonds, D. Gernaat, P. Havlik, N. Johnson, D. Klein, P. Kyle, G. Marangoni, T. Masui, R. C. Pietzcker, M. Strubegger, M. Wise, K. Riahi, D. P. van Vuuren (2017). Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives. Global Environmental Change, 42, pp. 316-330, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.07.006.)
  14. Berdowski et al., 1995 (J. J. M. Berdowski, A. F. Bouwman, W. M. Kieskamp, J. Slanina (1995). Assessment report on NRP subtheme "greenhouse gases": Sources and sinks of CO 2CH 4 and N 2O, databases and socio-economic causes. Studies in Environmental Science, 65(PART A), pp. 453-533, doi: http://dx.doi.org/10.1016/S0166-1116(06)80238-4.)
  15. Beusen et al., 1995 (A. H. W. Beusen, O. Klepper, C. R. Meinardi (1995). Modelling the flow of nitrogen and phosphorus in Europe: From loads to coastal seas. Water Science and Technology, 31(8), pp. 141-145, doi: http://dx.doi.org/10.1016/0273-1223(95)00364-S.)
  16. Bijl et al., 2018b (D.L. Bijl, P.W. Bogaart, S.C. Dekker, D.P. van Vuuren (2018). Unpacking the nexus: Different spatial scales for water, food and energy. Global Environmental Change, 48, pp. 22-31, doi: http://dx.doi.org/10.1016/j.gloenvcha.2017.11.005.)
  17. Bouwman and Booij, 1998 (A. F. Bouwman, H. Booij (1998). Global use and trade of feedstuffs and consequences for the nitrogen cycle. Nutrient Cycling in Agroecosystems, 52(2-3), pp. 261-267.)
  18. Bouwman and Germon, 1998 (A. F. Bouwman, J. C. Germon (1998). Introduction. Biology and Fertility of Soils, 27(3), pp. 219, doi: http://dx.doi.org/10.1007/s003740050423.)
  19. Bouwman and Leemans, 1995 (A. F. Bouwman, R. Leemans (1995). The role of forest soils in the global carbon cycle. Carbon forms and functions in forest soils, pp. 503-525.)
  20. Bouwman and Sombroek, 1990 (A. F. Bouwman, W. G. Sombroek (1990). Inputs to climatic change by soil and agriculture related activities: present status and possible future trends. Soils on a warmer Earth. Proc. international workshop, Nairobi, 1990, pp. 15-30.)
  21. Bouwman and Taylor, 1995 (A. F. Bouwman, J. A. Taylor (1995). Testing high resolution nitroux oxide emission estimates against observations using an atmospheric transport model. Studies in Environmental Science, 65(PART A), pp. 613-618, doi: http://dx.doi.org/10.1016/S0166-1116(06)80254-2.)
  22. Bouwman and Taylor, 1996 (A. F. Bouwman, J. A. Taylor (1996). Testing high-resolution nitrous oxide emission estimates against observations using an atmospheric transport model. Global Biogeochemical Cycles, 10(2), pp. 307-318, doi: http://dx.doi.org/10.1029/96GB00191.)
  23. Bouwman and Van Der Hoek, 1997 (A. F. Bouwman, K. W. Van Der Hoek (1997). Scenarios of animal waste production and fertilizer use and associated ammonia emission for the developing countries. Atmospheric Environment, 31(24), pp. 4095-4102, doi: http://dx.doi.org/10.1016/S1352-2310(97)00288-4.)
  24. Bouwman et al., 1995 (A. F. Bouwman, K. W. Van Der Hoek, J. G. J. Olivier (1995). Uncertainties in the global source distribution of nitrous oxide. Journal of Geophysical Research, 100(D2), pp. 2785-2800.)
  25. Bouwman et al., 2000 (A. F. Bouwman, J. A. Taylor, C. Kroeze (2000). Testing hypotheses on global emissions of nitrous oxide using atmospheric models. Chemosphere - Global Change Science, 2(3-4), pp. 475-492, doi: http://dx.doi.org/10.1016/S1465-9972(00)00027-1.)
  26. Bouwman et al., 2017 (A. F. Bouwman, A. H. W. Beusen, L. Lassaletta, D. F. Van Apeldoorn, H. J. M. Van Grinsven, J. Zhang, M. K. Ittersum Van (2017). Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Scientific Reports, 7, doi: http://dx.doi.org/10.1038/srep40366.)
  27. Bouwman, 1986 (A. F. Bouwman (1986). SODEMOD. A computer program for the assessment of the required soil conservation practices for a projected land use on a specific land unit. Soil Survey & Land Evaluation, 6(3), pp. 83-88.)
  28. Bouwman, 1989a (A. F. Bouwman (1989). Modelling soil organic matter decomposition and rainfall erosion in two tropical soils after forest clearing for permanent agriculture. Land Degradation & Development, 1(2), pp. 125-140, doi: http://dx.doi.org/10.1002/ldr.3400010205.)
  29. Bouwman, 1989b (A. F. Bouwman (1989). The role of soils and land use in the greenhouse effect. NETH. J. AGRIC. SCI., 37(1), pp. 13-19.)
  30. Bouwman, 1990a (A. F. Bouwman (1990). Conference on soils and the greenhouse effect. organized by the International Soil Reference and Information Centre on behalf of the Netherlands' Ministry of Housing, Physical Planning and Environment, Wageningen, the Netherlands, 14-18 August 1989. Land Use Policy, 7(2), pp. 184-185.)
  31. Bouwman, 1990b (A. F. Bouwman (1990). Land use related sources of greenhouse gases. Present emissions and possible future trends. Land Use Policy, 7(2), pp. 154-164, doi: http://dx.doi.org/10.1016/0264-8377(90)90006-K.)
  32. Bouwman, 1991 (A. F. Bouwman (1991). Agronomic aspects of wetland rice cultivation and associated methane emissions. Biogeochemistry, 15(2), pp. 65-88, doi: http://dx.doi.org/10.1007/BF00003218.)
  33. Bouwman, 1996 (A. F. Bouwman (1996). Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 46(1), pp. 53-70.)
  34. Bouwman, 1998 (A. F. Bouwman (1998). Nitrogen oxides and tropical agriculture. Nature, 392(6679), pp. 866-867, doi: http://dx.doi.org/10.1038/31809.)
  35. Braddock et al., 1994 (R. Braddock, J. Filar, R. Zapert, J. Rotmans, M. den Elzen (1994). The image greenhouse model as a mathematical system. Applied Mathematical Modelling, 18(5), pp. 234-254, doi: http://dx.doi.org/10.1016/0307-904X(94)90332-8.)
  36. Braspenning Radu et al., submitted (O. Braspenning Radu, M. van den Berg, Z. Klimont, S. Deetman, G. Janssens-Maenhout, M. Muntean, F. Dentener, D.P. van Vuuren (). Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios. Submitted, available on request.)
  37. Cayuela et al., 2017 (M. L. Cayuela, E. Aguilera, A. Sanz-Cobena, D. C. Adams, D. Abalos, L. Barton, R. Ryals, W. L. Silver, M. A. Alfaro, V. A. Pappa, P. Smith, J. Garnier, G. Billen, L. Bouwman, A. Bondeau, L. Lassaletta (2017). Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems and Environment, 238, pp. 25-35, doi: http://dx.doi.org/10.1016/j.agee.2016.10.006.)
  38. Chuwah et al., 2016 (C. Chuwah, T. van Noije, D. P. van Vuuren, P. Le Sager, W. Hazeleger (2016). Global and regional climate impacts of future aerosol mitigation in an RCP6.0-like scenario in EC-Earth. Climatic Change, 134(1-2), pp. 1-14, doi: http://dx.doi.org/10.1007/s10584-015-1525-9.)
  39. Conway et al., 1996 (D. Conway, M. Krol, J. Alcamo, M. Hulme (1996). Future availability of water in Egypt: The interaction of global, regional, and basin scale driving forces in the Nile Basin. AMBIO, 25(5), pp. 336-342.)
  40. Cox et al., 2018 (B. Cox, C.L. Mutel, C. Bauer, A. Mendoza Beltran, D.P. Van Vuuren (2018). Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles. Environmental Science and Technology, 52(8), pp. 4989-4995, doi: http://dx.doi.org/10.1021/acs.est.8b00261.)
  41. Dagnachew et al., 2017 (A.G. Dagnachew, P.L. Lucas, A.F. Hof, D.E.H.J. Gernaat, H.-S. de Boer, D.P. van Vuuren (2017). The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach. Energy, 139, pp. 184-195, doi: http://dx.doi.org/10.1016/j.energy.2017.07.144.)
  42. Daioglou et al., 2016 (V. Daioglou, E. Stehfest, B. Wicke, A. Faaij, D. P. van Vuuren (2016). Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy, 8(2), pp. 456-470, doi: http://dx.doi.org/10.1111/gcbb.12285.
    Link to PBL-website: http://www.pbl.nl/en/publications/projections-of-the-availability-and-cost-of-residues-from-agriculture-and-forestry.
    )
  43. Daioglou et al., 2017 (V. Daioglou, J.C. Doelman, E. Stehfest, C. Müller, B. Wicke, A. Faaij, D.P. Van Vuuren (2017). Greenhouse gas emission curves for advanced biofuel supply chains. Nature Climate Change, 7(12), pp. 920-924, doi: http://dx.doi.org/10.1038/s41558-017-0006-8.)
  44. De Cian et al., 2016 (E. De Cian, A. F. Hof, G. Marangoni, M. Tavoni, D. P. Van Vuuren (2016). Alleviating inequality in climate policy costs: An integrated perspective on mitigation, damage and adaptation. Environmental Research Letters, 11(7), doi: http://dx.doi.org/10.1088/1748-9326/11/7/074015.)
  45. De Haan et al., 1994 (B. J. De Haan, M. Jonas, O. Klepper, J. Krabec, M. S. Krol, K. Olendrzy?ski (1994). An atmosphere-ocean model for integrated assessment of global change. Water, Air, & Soil Pollution, 76(1-2), pp. 283-318, doi: http://dx.doi.org/10.1007/BF00478343.)
  46. De Kruijf and Van Vuuren, 1998 (H. A. M. De Kruijf, D. P. Van Vuuren (1998). Following sustainable development in relation to the north-south dialogue: Ecosystem health and sustainability indicators. Ecotoxicology and Environmental Safety, 40(1-2), pp. 4-14, doi: http://dx.doi.org/10.1006/eesa.1998.1635.)
  47. De Vries et al., 1999 (B. De Vries, M. Janssen, A. Beusen (1999). Perspectives on global energy futures: Simulations with the TIME model. Energy Policy, 27(8), pp. 477-494, doi: http://dx.doi.org/10.1016/S0301-4215(99)00035-X.)
  48. De Vries et al., 2000 (B. De Vries, J. Bollen, L. Bouwman, M. Den Elzen, M. Janssen, E. Kreileman (2000). Greenhouse gas emissions in an equity-, environment- and service-oriented world: An IMAGE-based scenario for the 21st century. Technological Forecasting and Social Change, 63(2-3), pp. 137-174, doi: http://dx.doi.org/10.1016/S0040-1625(99)00109-2.)
  49. Deetman et al., 2018 (S. Deetman, S. Pauliuk, D.P. Van Vuuren, E. Van Der Voet, A. Tukker (2018). Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances. Environmental Science and Technology, 52(8), pp. 4950-4959, doi: http://dx.doi.org/10.1021/acs.est.7b05549.)
  50. Den Elzen and Rotmans 1992 (M. G. J. Den Elzen, J. Rotmans (1992). The socio-economic impact of sea-level rise on the Netherlands: A study of possible scenarios. Climatic Change, 20(3), pp. 169-195, doi: http://dx.doi.org/10.1007/BF00139838.)
  51. Den Elzen and Rotmans, 1993 (M. G. J. den Elzen, J. Rotmans (1993). Modeling Climate Related Feedback Processes. Journal of Environmental Science and Health . Part A: Environmental Science and Engineering and Toxicology, 28(9), pp. 2095-2151, doi: http://dx.doi.org/10.1080/10934529309375997.)
  52. Den Elzen et al., 1992a (M. den Elzen, M. Janssen, J. Rotmans, R. Swart, B. de Vries (1992). Allocating constrained global carbon budgets: Inter-regional and inter-generational equity for a sustainable world. International Journal of Global Energy Issues, 4(4), pp. 287-301.)
  53. Den Elzen et al., 1992b (M. G. J. den Elzen, R. J. Swart, J. Rotmans (1992). Strengthening the Montreal protocol: does it cool down the greenhouse?. Science of the Total Environment, The, 113(3), pp. 229-250, doi: http://dx.doi.org/10.1016/0048-9697(92)90003-B.)
  54. Den Elzen et al., 1997 (M. G. J. Den Elzen, A. H. W. Beusen, J. Rotmans (1997). An integrated modeling approach to global carbon and nitrogen cycles: Balancing their budgets. Global Biogeochemical Cycles, 11(2), pp. 191-215, doi: http://dx.doi.org/10.1029/96GB03938.)
  55. Den Elzen et al., 2016b (M. den Elzen, H. Fekete, N. Höhne, A. Admiraal, N. Forsell, A. F. Hof, J. G. J. Olivier, M. Roelfsema, H. van Soest (2016). Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?. Energy Policy, 89, pp. 224-236, doi: http://dx.doi.org/10.1016/j.enpol.2015.11.030.)
  56. Den Elzen et al., 2019 (M. den Elzen, T. Kuramochi, N. Höhne, J. Cantzler, K. Esmeijer, H. Fekete, T. Fransen, K. Keramidas, M. Roelfsema, F. Sha, H. van Soest, T. Vandyck (2019). Are the G20 economies making enough progress to meet their NDC targets?. Energy Policy, pp. 238-250, doi: http://dx.doi.org/10.1016/j.enpol.2018.11.027.)
  57. Dermody et al., 2018 (B.J. Dermody, M. Sivapalan, E. Stehfest, D.P. Van Vuuren, M.J. Wassen, M.F.P. Bierkens, S.C. Dekker (2018). A framework for modelling the complexities of food and water security under globalisation. Earth System Dynamics, 9(1), pp. 103-118, doi: http://dx.doi.org/10.5194/esd-9-103-2018.)
  58. Doelman et al., 2020 (Doelman J.C., Stehfest E., van Vuuren D.P., Tabeau A., Hof A.F., Braakhekke M.C., Gernaat D.E.H.J., van den Berg M., van Zeist W.-J., Daioglou V., van Meijl H., Lucas P.L. (2020). Afforestation for climate change mitigation: Potentials, risks and trade-offs. Global Change Biology, 26(3), pp. 1576-1591, doi: http://dx.doi.org/10.1111/gcb.14887.)
  59. Edelenbosch et al. 2018 (O.Y. Edelenbosch, A. F. Hof, B. Nykvist, B. Girod & D. P. van Vuuren (2018). Transport electrification: the effect of recent battery cost reduction on future emission scenarios. Climatic Change, 151, pp. 95–108, doi: http://dx.doi.org/https://doi.org/10.1007/s10584-018-2250-y.)
  60. Edelenbosch et al., 2017 (O.Y. Edelenbosch, D.P. van Vuuren, C. Bertram, S. Carrara, J. Emmerling, H. Daly, A. Kitous, D.L. McCollum, N. Saadi Failali (2017). Transport fuel demand responses to fuel price and income projections: Comparison of integrated assessment models. Transportation Research Part D: Transport and Environment, 55, pp. 310-321, doi: http://dx.doi.org/10.1016/j.trd.2017.03.005.)
  61. Edelenbosch et al., 2018a (O.Y. Edelenbosch, D.L. McCollum, H. Pettifor, C. Wilson, D.P. Van Vuuren (2018). Interactions between social learning and technological learning in electric vehicle futures. Environmental Research Letters, 13(12), doi: http://dx.doi.org/10.1088/1748-9326/aae948.)
  62. Edelenbosch et al., 2018b (O.Y. Edelenbosch, A.F. Hof, B. Nykvist, B. Girod, D.P. van Vuuren (2018). Transport electrification: the effect of recent battery cost reduction on future emission scenarios. Climatic Change, 151(2), pp. 95-108, doi: http://dx.doi.org/10.1007/s10584-018-2250-y.)
  63. Eitelberg et al., 2016 (D. A. Eitelberg, J. van Vliet, J. C. Doelman, E. Stehfest, P. H. Verburg (2016). Demand for biodiversity protection and carbon storage as drivers of global land change scenarios. Global Environmental Change, 40, pp. 101-111, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.06.014.)
  64. Engström et al., 2016 (K. Engström, S. Olin, M. D. A. Rounsevell, S. Brogaard, D. P. Van Vuuren, P. Alexander, D. Murray-Rust, A. Arneth (2016). Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth System Dynamics, 7(4), pp. 893-915, doi: http://dx.doi.org/10.5194/esd-7-893-2016.)
  65. FAO, 1979 (FAO (1979). Report on the second meeting of the working group on soil degradation assessment methodology, Food and Agriculture Organization of the United Nations, Rome.)
  66. FAO, 2018 (Food and Agriculture Organization of the United Nations (2018). The future of food and agriculture. Alternative pathways to 2050, FAO, FAO, Rome(URL: http://www.fao.org/3/I8429EN/i8429en.pdf).)
  67. Flessa et al., 1996 (H. Flessa, P. Dörsch, F. Beese, H. König, A. F. Bouwman (1996). Influence of cattle wastes on nitrous oxide and methane fluxes in pasture land. Journal of Environmental Quality, 25(6), pp. 1366-1370.)
  68. Forsell et al., 2016 (N. Forsell, O. Turkovska, M. Gusti, M. Obersteiner, M. Den Elzen, P. Havlik (2016). Assessing the INDCs' land use, land use change, and forest emission projections. Carbon Balance and Management, 11(1), doi: http://dx.doi.org/10.1186/s13021-016-0068-3.)
  69. Frank et al., 2018 (Stefan Frank, Petr Havlík, Elke Stehfest, Hans van Meijl, Peter Witzke, Ignacio Pérez-Domínguez, Michiel van Dijk, Jonathan C. Doelman, Thomas Fellmann, Jason F. L. Koopman, Andrzej Tabeau & Hugo Valin (2018). Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target.. Nature Climate Change, 9(1), pp. 66-72, doi: http://dx.doi.org/https://doi.org/10.1038/s41558-018-0358-8.
    Link to PBL-website: https://www.pbl.nl/en/publications/agricultural-non-co2-emission-reduction-potential-in-the-context-of-the-1-5-c-target.
    )
  70. Fuss et al., 2016 (S. Fuss, C. D. Jones, F. Kraxner, G. P. Peters, P. Smith, M. Tavoni, D. P. Van Vuuren, J. G. Canadell, R. B. Jackson, J. Milne, J. R. Moreira, N. Nakicenovic, A. Sharifi, Y. Yamagata (2016). Research priorities for negative emissions. Environmental Research Letters, 11(11), doi: http://dx.doi.org/10.1088/1748-9326/11/11/115007.)
  71. Geels et al., 2016 (F. W. Geels, F. Berkhout, D. P. Van Vuuren (2016). Bridging analytical approaches for low-carbon transitions. Nature Climate Change, 6(6), pp. 576-583, doi: http://dx.doi.org/10.1038/nclimate2980.)
  72. Gelauff et al., 1995 (G. Gelauff, B. Geurts, A. Gielen, A. Den Ouden, J. Alcamo, R. Gerlagh (1995). Linking IMAGE 2 and WORLD SCAN. Studies in Environmental Science, 65(PART B), pp. 1407-1412, doi: http://dx.doi.org/10.1016/S0166-1116(06)80180-9.)
  73. Gernaat 2019 (Gernaat, DEHJ (2019). Phd Thesis: The role of renewable energy in long-term energy and climate scenarios.)
  74. Gernaat et al., 2020 (David E.H.J.Gernaat, Harmen-Sytzede Boer, Louise C.Dammeier, Detlef P.van Vuuren (2020). The role of residential rooftop photovoltaic in long-term energy and climate scenarios. Applied Energy, 279, doi: http://dx.doi.org/https://doi.org/10.1016/j.apenergy.2020.115705.)
  75. Gidden et al., 2018 (M.J. Gidden, S. Fujimori, M. van den Berg, D. Klein, S.J. Smith, D.P. van Vuuren, K. Riahi (2018). A methodology and implementation of automated emissions harmonization for use in Integrated Assessment Models. Environmental Modelling and Software, 105, pp. 187-200, doi: http://dx.doi.org/10.1016/j.envsoft.2018.04.002.)
  76. Goudriaan and Bouwman, 1995 (J. Goudriaan, A. F. Bouwman (1995). Discussion on the NRP assessment report "greenhouse gases". Studies in Environmental Science, 65(PART A), pp. 535-539, doi: http://dx.doi.org/10.1016/S0166-1116(06)80239-6.)
  77. Graedel et al., 1993 (T. E. Graedel, T. S. Bates, A. F. Bouwman, D. Cunnold, J. Dignon, I. Fung, D. J. Jacob, B. K. Lamb, J. A. Logan, G. Marland, P. Middleton, J. M. Pacyna, M. Placet, C. Veldt (1993). A compilation of inventories of emissions to the atmosphere. Global Biogeochemical Cycles, 7(1), pp. 1-26, doi: http://dx.doi.org/10.1029/92GB02793.)
  78. Grassi et al., 2017 (G. Grassi, J. House, F. Dentener, S. Federici, M. Den Elzen, J. Penman (2017). The key role of forests in meeting climate targets requires science for credible mitigation. Nature Climate Change, 7(3), pp. 220-226, doi: http://dx.doi.org/10.1038/nclimate3227.)
  79. Groeneveld et al., 1998 (R. Groeneveld, A. F. Bouwman, S. Kruitwagen, E. C. Van Ierland (1998). Nitrate leaching in dairy farming: Economic effects of environmental restrictions. Environmental Pollution, 102(SUPPL. 1), pp. 755-761, doi: http://dx.doi.org/10.1016/S0269-7491(98)80109-7.)
  80. Hallegatte et al., 2016 (S. Hallegatte, J. Rogelj, M. Allen, L. Clarke, O. Edenhofer, C. B. Field, P. Friedlingstein, L. Van Kesteren, R. Knutti, K. J. Mach, M. Mastrandrea, A. Michel, J. Minx, M. Oppenheimer, G. K. Plattner, K. Riahi, M. Schaeffer, T. F. Stocker, D. P. Van Vuuren (2016). Mapping the climate change challenge. Nature Climate Change, 6(7), pp. 663-668, doi: http://dx.doi.org/10.1038/nclimate3057.)
  81. Harper et al., 2018 (A.B. Harper, T. Powell, P.M. Cox, J. House, C. Huntingford, T.M. Lenton, S. Sitch, E. Burke, S.E. Chadburn, W.J. Collins, E. Comyn-Platt, V. Daioglou, J.C. Doelman, G. Hayman, E. Robertson, D. van Vuuren, A. Wiltshire, C.P. Webber, A. Bastos, L. Boysen, P. Ciais, N. Devaraju, A.K. Jain, A. Krause, B. Poulter, S. Shu (2018). Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 9(1), doi: http://dx.doi.org/10.1038/s41467-018-05340-z.)
  82. Hasegawa et al., 2018 (T. Hasegawa, S. Fujimori, P. Havlík, H. Valin, B.L. Bodirsky, J.C. Doelman, T. Fellmann, P. Kyle, J.F.L. Koopman, H. Lotze-Campen, D. Mason-D’Croz, Y. Ochi, I. Pérez Domínguez, E. Stehfest, T.B. Sulser, A. Tabeau, K. Takahashi, J. Takakura, H. van Meijl, W.-J. van Zeist, K. Wiebe, P. Witzke (2018). Risk of increased food insecurity under stringent global climate change mitigation policy. Nature Climate Change, 8(8), pp. 699-703, doi: http://dx.doi.org/10.1038/s41558-018-0230-x.)
  83. Hastings and Dunbar, 1999 (D.A. Hastings, P.K. Dunbar (1999). The Global Land One-kilometer Base Elevation (GLOBE) digital Elevation Model, National Geophysical Data Center, Colorado.)
  84. Heil et al., 1995 (G. W. Heil, J. C. J. H. Aerts, A. M. J. V. Van Boxtel, W. P. A. Van Deursen, R. Leemans, J. G. Van Minnen (1995). Remote sensing based modelling of the terrestrial carbon cycle of Europe. Studies in Environmental Science, 65(PART A), pp. 567-570, doi: http://dx.doi.org/10.1016/S0166-1116(06)80245-1.)
  85. Herrero et al., 2016 (M. Herrero, B. Henderson, P. Havlík, P. K. Thornton, R. T. Conant, P. Smith, S. Wirsenius, A. N. Hristov, P. Gerber, M. Gill, K. Butterbach-Bahl, H. Valin, T. Garnett, E. Stehfest (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6(5), pp. 452-461, doi: http://dx.doi.org/10.1038/nclimate2925.)
  86. Hirsch et al., 2018 (A.L. Hirsch, B.P. Guillod, S.I. Seneviratne, U. Beyerle, L.R. Boysen, V. Brovkin, E.L. Davin, J.C. Doelman, H. Kim, D.M. Mitchell, T. Nitta, H. Shiogama, S. Sparrow, E. Stehfest, D.P. van Vuuren, S. Wilson (2018). Biogeophysical Impacts of Land-Use Change on Climate Extremes in Low-Emission Scenarios: Results From HAPPI-Land. Earth's Future, 6(3), pp. 396-409, doi: http://dx.doi.org/10.1002/2017EF000744.)
  87. Häyhä et al., 2016 (T. Häyhä, P. L. Lucas, D. P. van Vuuren, S. E. Cornell, H. Hoff (2016). From Planetary Boundaries to national fair shares of the global safe operating space — How can the scales be bridged?. Global Environmental Change, 40, pp. 60-72, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.06.008.)
  88. Höhne et al., 2018 (N. Höhne, H. Fekete, M.G.J. den Elzen, A.F. Hof, T. Kuramochi (2018). Assessing the ambition of post-2020 climate targets: a comprehensive framework. Climate Policy, 18(4), pp. 425-441, doi: http://dx.doi.org/10.1080/14693062.2017.1294046.)
  89. IEA, 2017 (International Energy Agency (2017). World Energy Balances (Edition 2017)(URL: https://doi.org/10.1787/9ddec1c1-en).)
  90. Jewell et al., 2018 (J. Jewell, D. McCollum, J. Emmerling, C. Bertram, D.E.H.J. Gernaat, V. Krey, L. Paroussos, L. Berger, K. Fragkiadakis, I. Keppo, N. Saadi, M. Tavoni, D. Van Vuuren, V. Vinichenko, K. Riahi (2018). Limited emission reductions from fuel subsidy removal except in energy-exporting regions. Nature, 554(7691), pp. 229-233, doi: http://dx.doi.org/10.1038/nature25467.)
  91. Jones et al., 2016 (C. D. Jones, P. Ciais, S. J. Davis, P. Friedlingstein, T. Gasser, G. P. Peters, J. Rogelj, D. P. Van Vuuren, J. G. Canadell, A. Cowie, R. B. Jackson, M. Jonas, E. Kriegler, E. Littleton, J. A. Lowe, J. Milne, G. Shrestha, P. Smith, A. Torvanger, A. Wiltshire (2016). Simulating the Earth system response to negative emissions. Environmental Research Letters, 11(9), doi: http://dx.doi.org/10.1088/1748-9326/11/9/095012.)
  92. Jägermeyr et al., 2017 (Jonas Jägermeyr, Amandine Pastor, Hester Biemans & Dieter Gerten (2017). Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nature Communications, 8, doi: http://dx.doi.org/https://doi.org/10.1038/ncomms15900.)
  93. Kermeli et al., 2019 (K. Kermeli, O.Y. Edelenbosch, W. Crijns-Graus, B.J. van Ruijven, S. Mima, D.P. van Vuuren, E. Worrell (2019). The scope for better industry representation in long-term energy models: Modeling the cement industry. Applied Energy, 240, pp. 964-985, doi: http://dx.doi.org/10.1016/j.apenergy.2019.01.252.)
  94. Kim et al., 2018 (H. Kim, I.M.D. Rosa, R. Alkemade, P. Leadley, G. Hurtt, A. Popp, D.P. Van Vuuren, P. Anthoni, A. Arneth, D. Baisero, E. Caton, R. Chaplin-Kramer, L. Chini, A. De Palma, F. Di Fulvio, M. Di Marco, F. Espinoza, S. Ferrier, S. Fujimori, R.E. Gonzalez, M. Gueguen, C. Guerra, M. Harfoot, T.D. Harwood, T. Hasegawa, V. Haverd, P. Havlík, S. Hellweg, S.L.L. Hill, A. Hirata, A.J. Hoskins, J.H. Janse, W. Jetz, J.A. Johnson, A. Krause, D. Leclère, I.S. Martins, T. Matsui, C. Merow, M. Obersteiner, H. Ohashi, B. Poulter, A. Purvis, B. Quesada, C. Rondinini, A.M. Schipper, R. Sharp, K. Takahashi, W. Thuiller, N. Titeux, P. Visconti, C. Ware (2018). A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 11(11), pp. 4537-4562, doi: http://dx.doi.org/10.5194/gmd-11-4537-2018.)
  95. Koelbl et al., 2016 (B. S. Koelbl, M. A. van den Broek, H. C. Wilting, M. W. J. L. Sanders, T. Bulavskaya, R. Wood, A. P. C. Faaij, D. P. van Vuuren (2016). Socio-economic impacts of low-carbon power generation portfolios: Strategies with and without CCS for the Netherlands. Applied Energy, 183, pp. 257-277, doi: http://dx.doi.org/10.1016/j.apenergy.2016.08.068.)
  96. Kok et al., 2016 (M. Kok, M. Lüdeke, P. Lucas, T. Sterzel, C. Walther, P. Janssen, D. Sietz, I. de Soysa (2016). A new method for analysing socio-ecological patterns of vulnerability. Regional Environmental Change, 16(1), pp. 229-243, doi: http://dx.doi.org/10.1007/s10113-014-0746-1.)
  97. Kok et al., 2018 (M.T.J. Kok, R. Alkemade, M. Bakkenes, M. van Eerdt, J. Janse, M. Mandryk, T. Kram, T. Lazarova, J. Meijer, M. van Oorschot, H. Westhoek, R. van der Zagt, M. van der Berg, S. van der Esch, A.-G. Prins, D.P. van Vuuren (2018). Pathways for agriculture and forestry to contribute to terrestrial biodiversity conservation: A global scenario-study. Biological Conservation, 221, pp. 137-150, doi: http://dx.doi.org/10.1016/j.biocon.2018.03.003.)
  98. Krause et al., 2017 (A. Krause, T.A.M. Pughl, A.D. Bayer, J.C. Doelman, F. Humpenöder, P. Anthoni, S. Olin, B.L. Bodirsky, A. Popp, E. Stehfest, A. Arneth (2017). Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators. Biogeosciences, 14(21), pp. 4829-4850, doi: http://dx.doi.org/10.5194/bg-14-4829-2017.)
  99. Krause et al., 2018 (A. Krause, T.A.M. Pugh, A.D. Bayer, W. Li, F. Leung, A. Bondeau, J.C. Doelman, F. Humpenöder, P. Anthoni, B.L. Bodirsky, P. Ciais, C. Müller, G. Murray-Tortarolo, S. Olin, A. Popp, S. Sitch, E. Stehfest, A. Arneth (2018). Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts. Global Change Biology, 24(7), pp. 3025-3038, doi: http://dx.doi.org/10.1111/gcb.14144.)
  100. Kriegler et al., 2018 (E. Kriegler, G. Luderer, N. Bauer, L. Baumstark, S. Fujimori, A. Popp, J. Rogelj, J. Strefer, D.P. Van Vuuren (2018). Pathways limiting warming to 1.5°C: A tale of turning around in no time?. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), doi: http://dx.doi.org/10.1098/rsta.2016.0457.)
  101. Kroeze et al., 1999 (C. Kroeze, A. Mosier, L. Bouwman (1999). Closing the global N2O budget: A retrospective analysis 1500-1994. Global Biogeochemical Cycles, 13(1), pp. 1-8, doi: http://dx.doi.org/10.1029/1998GB900020.)
  102. Lassaletta et al., 2016 (L. Lassaletta, G. Billen, J. Garnier, L. Bouwman, E. Velazquez, N. D. Mueller, J. S. Gerber (2016). Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environmental Research Letters, 11(9), doi: http://dx.doi.org/10.1088/1748-9326/11/9/095007.)
  103. Lassaletta et al., 2019 (L. Lassaletta, F.Estellés, A.H.W. Beusen, L. Bouwman, S. Calvet, H.J.M. van Grinsven, J.C. Doelman, E. Stehfest, A. Uwizeye, H. Westhoek (2019). Future global pig production systems according to the Shared Socioeconomic Pathways. Science of the Total Environment, 665, pp. 739-751, doi: http://dx.doi.org/10.1016/j.scitotenv.2019.02.079.)
  104. Le Quéré et al., 2016 (C. Le Quéré, R. M. Andrew, J. G. Canadell, S. Sitch, J. Ivar Korsbakken, G. P. Peters, A. C. Manning, T. A. Boden, P. P. Tans, R. A. Houghton, R. F. Keeling, S. Alin, O. D. Andrews, P. Anthoni, L. Barbero, L. Bopp, F. Chevallier, L. P. Chini, P. Ciais, K. Currie, C. Delire, S. C. Doney, P. Friedlingstein, T. Gkritzalis, I. Harris, J. Hauck, V. Haverd, M. Hoppema, K. Klein Goldewijk, A. K. Jain, E. Kato, A. Körtzinger, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, D. Lombardozzi, J. R. Melton, N. Metzl, F. Millero, P. M. S. Monteiro, D. R. Munro, J. E. M. S. Nabel, S. I. Nakaoka, K. O'Brien, A. Olsen, A. M. Omar, T. Ono, D. Pierrot, B. Poulter, C. Rödenbeck, J. Salisbury, U. Schuster, J. Schwinger, R. Séférian, I. Skjelvan, B. D. Stocker, A. J. Sutton, T. Takahashi, H. Tian, B. Tilbrook, I. T. Van Der Laan-Luijkx, G. R. Van Der Werf, N. Viovy, A. P. Walker, A. J. Wiltshire, S. Zaehle (2016). Global Carbon Budget 2016. Earth System Science Data, 8(2), pp. 605-649, doi: http://dx.doi.org/10.5194/essd-8-605-2016.)
  105. Le Quéré et al., 2019 (L. Lassaletta, F.Estellés, A.H.W. Beusen, L. Bouwman, S. Calvet, H.J.M. van Grinsven, J.C. Doelman, E. Stehfest, A. Uwizeye, H. Westhoek (2019). Drivers of declining CO2 emissions in 18 developed economies. Nature Climate Change, 9(3), pp. 213-217, doi: http://dx.doi.org/10.1038/s41558-019-0419-7.)
  106. Leclere et al., 2020 (David Leclère, Michael Obersteiner, Mike Barrett, Stuart H. M. Butchart, Abhishek Chaudhary, Adriana De Palma, Fabrice A. J. DeClerck, Moreno Di Marco, Jonathan C. Doelman, Martina Dürauer, Robin Freeman, Michael Harfoot, Tomoko Hasegawa, Stefanie Hellweg, Jelle P. Hilbers, Samantha L. L. Hill, Florian Humpenöder, Nancy Jennings, Tamás Krisztin, Georgina M. Mace, Haruka Ohashi, Alexander Popp, Andy Purvis, Aafke M. Schipper, Andrzej Tabeau, Hugo Valin, Hans van Meijl, Willem-Jan van Zeist, Piero Visconti, Rob Alkemade, Rosamunde Almond, Gill Bunting, Neil D. Burgess, Sarah E. Cornell, Fulvio Di Fulvio, Simon Ferrier, Steffen Fritz, Shinichiro Fujimori, Monique Grooten, Thomas Harwood, Petr Havlík, Mario Herrero, Andrew J. Hoskins, Martin Jung, Tom Kram, Hermann Lotze-Campen, Tetsuya Matsui, Carsten Meyer, Deon Nel, Tim Newbold, Guido Schmidt-Traub, Elke Stehfest, Bernardo B. N. Strassburg, Detlef P. van Vuuren, Chris Ware, James E. M. Watson, Wenchao Wu and Lucy Young (2020). Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 585, pp. 551–556, doi: http://dx.doi.org/https://doi.org/10.1038/s41586-020-2705-y.
    Link to PBL-website: https://www.pbl.nl/en/publications/bending-the-curve-of-terrestrial-biodiversity-0.
    )
  107. Lee et al., 1997 (D. S. Lee, I. Köhler, E. Grobler, F. Rohrer, R. Sausen, L. Gallardo-Klenner, J. G. J. Olivier, F. J. Dentener, A. F. Bouwman (1997). Estimations of global NO(x) emissions and their uncertainties. Atmospheric Environment, 31(12), pp. 1735-1749, doi: http://dx.doi.org/10.1016/S1352-2310(96)00327-5.)
  108. Lee et al., 1999 (D. S. Lee, R. D. Kingdon, J. M. Pacyna, A. F. Bouwman, I. Tegen (1999). Modelling base cations in Europe - Sources, transport and deposition of calcium. Atmospheric Environment, 33(14), pp. 2241-2256, doi: http://dx.doi.org/10.1016/S1352-2310(98)00169-1.)
  109. Leemans and Van Den Born, 1994 (R. Leemans, G. J. van den Born (1994). Determining the potential distribution of vegetation, crops and agricultural productivity. Water, Air, & Soil Pollution, 76(1-2), pp. 133-161, doi: http://dx.doi.org/10.1007/BF00478338.)
  110. Leemans et al., 1996 (R. Leemans, A. Van Amstel, C. Battjes, E. Kreileman, S. Toet (1996). The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source. Global Environmental Change, 6(4), pp. 335-357, doi: http://dx.doi.org/10.1016/S0959-3780(96)00028-3.)
  111. Leemans, 1995 (R. Leemans (1995). Determining the global significance of local and regional mitigation strategies: Setting the scene with global integrated assessment models. Environmental Monitoring and Assessment, 38(2-3), pp. 205-216, doi: http://dx.doi.org/10.1007/BF00546763.)
  112. Li et al., 2020 (Li W., Ciais P., Stehfest E., Van Vuuren D., Popp A., Arneth A., Di Fulvio F., Doelman J., Humpenöder F., B Harper A., Park T., Makowski D., Havlik P., Obersteiner M., Wang J., Krause A., Liu W. (2020). Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale. Earth System Science Data, 12(2), pp. 789-804, doi: http://dx.doi.org/10.5194/essd-12-789-2020.)
  113. Liu et al., 2016a (B. Liu, S. Asseng, C. Müller, F. Ewert, J. Elliott, D. B. Lobell, P. Martre, A. C. Ruane, D. Wallach, J. W. Jones, C. Rosenzweig, P. K. Aggarwal, P. D. Alderman, J. Anothai, B. Basso, C. Biernath, D. Cammarano, A. Challinor, D. Deryng, G. De Sanctis, J. Doltra, E. Fereres, C. Folberth, M. Garcia-Vila, S. Gayler, G. Hoogenboom, L. A. Hunt, R. C. Izaurralde, M. Jabloun, C. D. Jones, K. C. Kersebaum, B. A. Kimball, A. K. Koehler, S. N. Kumar, C. Nendel, G. J. O'Leary, J. E. Olesen, M. J. Ottman, T. Palosuo, P. V. V. Prasad, E. Priesack, T. A. M. Pugh, M. Reynolds, E. E. Rezaei, R. P. Rötter, E. Schmid, M. A. Semenov, I. Shcherbak, E. Stehfest, C. O. Stöckle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, P. Thorburn, K. Waha, G. W. Wall, E. Wang, J. W. White, J. Wolf, Z. Zhao, Y. Zhu (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6(12), pp. 1130-1136, doi: http://dx.doi.org/10.1038/nclimate3115.)
  114. Liu et al., 2016b (J. Liu, J. Zang, L. Bouwman, S. Liu, Z. Yu, X. Ran (2016). Distribution and budget of dissolved and biogenic silica in the Bohai Sea and Yellow Sea. Biogeochemistry, 130(1-2), pp. 85-101, doi: http://dx.doi.org/10.1007/s10533-016-0244-2.)
  115. Luderer et al., 2018 (G. Luderer, Z. Vrontisi, C. Bertram, O.Y. Edelenbosch, R.C. Pietzcker, J. Rogelj, H.S. De Boer, L. Drouet, J. Emmerling, O. Fricko, S. Fujimori, P. Havlík, G. Iyer, K. Keramidas, A. Kitous, M. Pehl, V. Krey, K. Riahi, B. Saveyn, M. Tavoni, D.P. Van Vuuren, E. Kriegler (2018). Residual fossil CO2 emissions in 1.5-2 °c pathways. Nature Climate Change, 8(7), pp. 626-633, doi: http://dx.doi.org/10.1038/s41558-018-0198-6.)
  116. Marangoni et al., 2017 (G. Marangoni, M. Tavoni, V. Bosetti, E. Borgonovo, P. Capros, O. Fricko, D. E. H. J. Gernaat, C. Guivarch, P. Havlik, D. Huppmann, N. Johnson, P. Karkatsoulis, I. Keppo, V. Krey, E. Ó Broin, J. Price, D. P. Van Vuuren (2017). Sensitivity of projected long-term CO 2 emissions across the Shared Socioeconomic Pathways. Nature Climate Change, 7(2), pp. 113-117, doi: http://dx.doi.org/10.1038/nclimate3199.
    Link to PBL-website: http://www.pbl.nl/en/publications/sensitivity-of-projected-long-term-co2-emissions-across-the-shared-socioeconomic-pathways.
    )
  117. McCollum et al. erratum, 2018 (D.L. McCollum, W. Zhou, C. Bertram, H.-S. de Boer, V. Bosetti, S. Busch, J. Després, L. Drouet, J. Emmerling, M. Fay, O. Fricko, S. Fujimori, M. Gidden, M. Harmsen, D. Huppmann, G. Iyer, V. Krey, E. Kriegler, C. Nicolas, S. Pachauri, S. Parkinson, M. Poblete-Cazenave, P. Rafaj, N. Rao, J. Rozenberg, A. Schmitz, W. Schoepp, D. van Vuuren, K. Riahi (2018).)
  118. McCollum et al., 2018a (D.L. McCollum, C. Wilson, M. Bevione, S. Carrara, O.Y. Edelenbosch, J. Emmerling, C. Guivarch, P. Karkatsoulis, I. Keppo, V. Krey, Z. Lin, E. Ó Broin, L. Paroussos, H. Pettifor, K. Ramea, K. Riahi, F. Sano, B. Solano Rodriguez, D.P. van Vuuren (2018). Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nature Energy, 3(8), pp. 664-673, doi: http://dx.doi.org/10.1038/s41560-018-0195-z.)
  119. McCollum et al., 2018b (D.L. McCollum, W. Zhou, C. Bertram, H.-S. De Boer, V. Bosetti, S. Busch, J. Després, L. Drouet, J. Emmerling, M. Fay, O. Fricko, S. Fujimori, M. Gidden, M. Harmsen, D. Huppmann, G. Iyer, V. Krey, E. Kriegler, C. Nicolas, S. Pachauri, S. Parkinson, M. Poblete-Cazenave, P. Rafaj, N. Rao, J. Rozenberg, A. Schmitz, W. Schoepp, D. Van Vuuren, K. Riahi (2018). Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nature Energy, 3(7), pp. 589-599, doi: http://dx.doi.org/10.1038/s41560-018-0179-z.)
  120. Meinardi et al., 1995 (C. R. Meinardi, A. H. W. Beusen, M. J. S. Bollen, O. Klepper, W. J. Willems (1995). Vulnerability to diffuse pollution and average nitrate contamination of European soils and groundwater. Water Science and Technology, 31(8), pp. 159-165, doi: http://dx.doi.org/10.1016/0273-1223(95)00368-W.)
  121. Mendoza Beltran et al., 2018 (A. Mendoza Beltran, B. Cox, C.Mutel, D.P. van Vuuren, D. Font Vivanco, S. Deetman, O.Y. Edelenbosch, J. Guinée, A. Tukker (2018). When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment. Journal of Industrial Ecology., -(-), pp. -, doi: http://dx.doi.org/10.1111/jiec.12825.)
  122. Molotoks et al., 2018 (A. Molotoks, E. Stehfest, J. Doelman, F. Albanito, N. Fitton, T.P. Dawson, P. Smith (2018). Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Global Change Biology, 24(12), pp. 5895-5908, doi: http://dx.doi.org/10.1111/gcb.14459.)
  123. Molotoks et al., 2020 (Molotoks A., Henry R., Stehfest E., Doelman J., Havlik P., Krisztin T., Alexander P., Dawson T.P., Smith P. (2020). Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794), doi: http://dx.doi.org/10.1098/rstb.2019.0189.)
  124. New et al., 1997 (M. New, M. Hulme, P. Jones (1997). A 1961-1990 mean monthly climatology of global land areas, Climate Research Unit, Norwich.)
  125. O'Neill et al., 2016 (B. C. O'Neill, C. Tebaldi, D. P. Van Vuuren, V. Eyring, P. Friedlingstein, G. Hurtt, R. Knutti, E. Kriegler, J. F. Lamarque, J. Lowe, G. A. Meehl, R. Moss, K. Riahi, B. M. Sanderson (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), pp. 3461-3482, doi: http://dx.doi.org/10.5194/gmd-9-3461-2016.)
  126. O'Neill et al., 2017 (B. C. O'Neill, E. Kriegler, K. L. Ebi, E. Kemp-Benedict, K. Riahi, D. S. Rothman, B. J. van Ruijven, D. P. van Vuuren, J. Birkmann, K. Kok, M. Levy, W. Solecki (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, pp. 169-180, doi: http://dx.doi.org/10.1016/j.gloenvcha.2015.01.004.)
  127. Olivier et al., 1994 (J. G. J. Olivier, A. F. Bouwman, C. W. M. van der Maas, J. J. M. Berdowski (1994). Emission database for global atmospheric research (Edgar). Environmental Monitoring and Assessment, 31(1-2), pp. 93-106, doi: http://dx.doi.org/10.1007/BF00547184.)
  128. Olivier et al., 1995 (J. G. J. Olivier, A. F. Bouwman, C. W. M. Van Der Maas, J. J. M. Berdowski (1995). Emission database for global atmospheric research (EDGAR): Version 2.0. Studies in Environmental Science, 65(PART A), pp. 651-659, doi: http://dx.doi.org/10.1016/S0166-1116(06)80262-1.)
  129. Olivier et al., 1998 (J. G. J. Olivier, A. F. Bouwman, K. W. Van Der Hoek, J. J. M. Berdowski (1998). Global air emission inventories for anthropogenic sources of NO(x), NH3 and N2O in 1990. Environmental Pollution, 102(SUPPL. 1), pp. 135-148, doi: http://dx.doi.org/10.1016/S0269-7491(98)80026-2.)
  130. Olivier et al., 1999a (J. G. J. Olivier, J. P. J. Bloos, J. J. M. Berdowski, A. J. H. Visschedijk, A. F. Bouwman (1999). A 1990 global emission inventory of anthropogenic sources of carbon monoxide on 1° × 1° developed in the framework of EDGAR/GEIA. Chemosphere - Global Change Science, 1(1-3), pp. 1-17.)
  131. Olivier et al., 1999b (J. G. J. Olivier, A. F. Bouwman, J. J. M. Berdowski, C. Veldt, J. P. J. Bloos, A. J. H. Visschedijk, C. W. M. Van Der Maas, P. Y. J. Zandveld (1999). Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1°×1°. Environmental Science and Policy, 2(3), pp. 241-263.)
  132. Pan et al., 2017 (X. Pan, M.D. Elzen, N. Höhne, F. Teng, L. Wang (2017). Exploring fair and ambitious mitigation contributions under the Paris Agreement goals. Environmental Science and Policy, 74, pp. 49-56, doi: http://dx.doi.org/10.1016/j.envsci.2017.04.020.)
  133. Pastor et al., 2019 (A. V. Pastor, A. Palazzo, P. Havlik, H. Biemans, Y. Wada, M. Obersteiner, P. Kabat & F. Ludwig (2019). The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2, pp. 499–507, doi: http://dx.doi.org/https://doi.org/10.1038/s41893-019-0287-1.)
  134. Peñuelas et al., 2017 (J. Peñuelas, J. Sardans, B. Walsh, P. Ciais, I.A. Janssens, K. Riahi, F. Rydzak, D. Van Vuuren, M. Obersteiner (2017). Possible pathways for balancing CO2 emissions and sinks as agreed in Paris COP21. Ecosistemas, 26(3), pp. 103-105, doi: http://dx.doi.org/10.7818/ECOS.2017.26-3.12.)
  135. Popp et al., 2017 (A. Popp, K. Calvin, S. Fujimori, P. Havlik, F. Humpenöder, E. Stehfest, B. L. Bodirsky, J. P. Dietrich, J. C. Doelmann, M. Gusti, T. Hasegawa, P. Kyle, M. Obersteiner, A. Tabeau, K. Takahashi, H. Valin, S. Waldhoff, I. Weindl, M. Wise, E. Kriegler, H. Lotze-Campen, O. Fricko, K. Riahi, D. P. V. Vuuren (2017). Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42, pp. 331-345, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.10.002.)
  136. Posch et al., 1996 (M. Posch, J. P. Hettelingh, J. Alcamo, M. Krol (1996). Integrated scenarios of acidification and climate change in Asia and Europe. Global Environmental Change, 6(4), pp. 375-394, doi: http://dx.doi.org/10.1016/S0959-3780(96)00029-5.)
  137. Prestele et al., 2016 (R. Prestele, P. Alexander, M. D. A. Rounsevell, A. Arneth, K. Calvin, J. Doelman, D. A. Eitelberg, K. Engström, S. Fujimori, T. Hasegawa, P. Havlik, F. Humpenöder, A. K. Jain, T. Krisztin, P. Kyle, P. Meiyappan, A. Popp, R. D. Sands, R. Schaldach, J. Schüngel, E. Stehfest, A. Tabeau, H. Van Meijl, J. Van Vliet, P. H. Verburg (2016). Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Global Change Biology, 22(12), pp. 3967-3983, doi: http://dx.doi.org/10.1111/gcb.13337.)
  138. Prestele et al., 2017 ((2017). Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth System Dynamics, 8(2), pp. 369-386, doi: http://dx.doi.org/10.5194/esd-8-369-2017.)
  139. Reiners et al., 1994 (W. A. Reiners, A. F. Bouwman, W. F. J. Parsons, M. Keller (1994). Tropical rain forest conversion to pasture: Changes in vegetation and soil properties. Ecological Applications, 4(2), pp. 363-377.)
  140. Riahi et al., 2016 (Keywan Riahi et al. Of PBL: Detlef van Vuuren, Tom Kram, Elke Stehfest, David Gernaat, Mathijs Harmsen, Jonathan Doelman (2016). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.gloenvcha.2016.05.009.)
  141. Riahi et al., 2017 (K. Riahi, D. P. van Vuuren, E. Kriegler, J. Edmonds, B. C. O'Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko, W. Lutz, A. Popp, J. C. Cuaresma, S. Kc, M. Leimbach, L. Jiang, T. Kram, S. Rao, J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik, F. Humpenöder, L. A. Da Silva, S. Smith, E. Stehfest, V. Bosetti, J. Eom, D. Gernaat, T. Masui, J. Rogelj, J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark, J. C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner, A. Tabeau, M. Tavoni (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, pp. 153-168, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.05.009.)
  142. Richards et al., 2018 (M.B. Richards, E. Wollenberg, D. van Vuuren (2018). National contributions to climate change mitigation from agriculture: allocating a global target. Climate Policy, 18(10), pp. 1271-1285, doi: http://dx.doi.org/10.1080/14693062.2018.1430018.)
  143. Roelfsema et al., 2018a (M. Roelfsema, H. Fekete, N. Höhne, M. den Elzen, N. Forsell, T. Kuramochi, H. de Coninck, D.P. van Vuuren (2018). Reducing global GHG emissions by replicating successful sector examples: the ‘good practice policies’ scenario. Climate Policy, 18(9), pp. 1103-1113, doi: http://dx.doi.org/10.1080/14693062.2018.1481356.)
  144. Roelfsema et al., 2018b (M. Roelfsema, M. Harmsen, J.J.G. Olivier, A.F. Hof, D.P. van Vuuren (2018). Integrated assessment of international climate mitigation commitments outside the UNFCCC. Global Environmental Change, 48, pp. 67-75, doi: http://dx.doi.org/10.1016/j.gloenvcha.2017.11.001.)
  145. Rogelj et al., 2016b (J. Rogelj, M. Schaeffer, P. Friedlingstein, N. P. Gillett, D. P. Van Vuuren, K. Riahi, M. Allen, R. Knutti (2016). Differences between carbon budget estimates unravelled. Nature Climate Change, 6(3), pp. 245-252, doi: http://dx.doi.org/10.1038/nclimate2868.)
  146. Rogelj et al., 2018 (J. Rogelj, A. Popp, K.V. Calvin, G. Luderer, J. Emmerling, D. Gernaat, S. Fujimori, J. Strefler, T. Hasegawa, G. Marangoni, V. Krey, E. Kriegler, K. Riahi, D.P. Van Vuuren, J. Doelman, L. Drouet, J. Edmonds, O. Fricko, M. Harmsen, P. Havlík, F. Humpenöder, E. Stehfest, M. Tavoni (2018). Scenarios towards limiting global mean temperature increase below 1.5 °c. Nature Climate Change, 8(4), pp. 325-332, doi: http://dx.doi.org/10.1038/s41558-018-0091-3.)
  147. Rosenzweig et al., 2017 (C. Rosenzweig, N. W. Arnell, K. L. Ebi, H. Lotze-Campen, F. Raes, C. Rapley, M. S. Smith, W. Cramer, K. Frieler, C. P. O. Reyer, J. Schewe, D. Van Vuuren, L. Warszawski (2017). Assessing inter-sectoral climate change risks: The role of ISIMIP. Environmental Research Letters, 12(1), doi: http://dx.doi.org/10.1088/1748-9326/12/1/010301.)
  148. Rotmans and Den Elzen, 1992 (J. Rotmans, M. G. J. Den Elzen (1992). A model?based approach to the calculation of global warming potentials (GWP). International Journal of Climatology, 12(8), pp. 865-874, doi: http://dx.doi.org/10.1002/joc.3370120809.)
  149. Rotmans and Den Elzen, 1993 (J. Rotmans, M. G. J. Den Elzen (1993). Modelling feedback mechanisms in the carbon cycle: balancing the carbon budget. Tellus B, 45(4), pp. 301-320, doi: http://dx.doi.org/10.1034/j.1600-0889.1993.t01-3-00001.x.)
  150. Rotmans et al., 1992 (J. Rotmans, M. G. J. Den Elzen, M. S. Krol, R. J. Swart, H. J. Van Der Woerd (1992). Stabilizing atmospheric concentrations: towards international methane control. AMBIO, 21(6), pp. 404-413.)
  151. Santos et al., 2017 (M.J. Santos, S.C. Dekker, V. Daioglou, M.C. Braakhekke, D.P. van Vuuren (2017). Modeling the effects of future growing demand for charcoal in the tropics. Frontiers in Environmental Science, 5(JUN), doi: http://dx.doi.org/10.3389/fenvs.2017.00028.)
  152. Sattari et al., 2016 (S. Z. Sattari, A. F. Bouwman, R. Martinez Rodríguez, A. H. W. Beusen, M. K. Van Ittersum (2016). Negative global phosphorus budgets challenge sustainable intensification of grasslands. Nature Communications, 7, doi: http://dx.doi.org/10.1038/ncomms10696.)
  153. Schlesinger et al., 2000 (M.E. Schlesinger, S. Malyshev, E.V. Rozanov, F. Yang, N.G. Andronova, B. De Vries, A. Grübler, K. Jiang, T. Masui, T. Morita, J. Penner, W. Pepper, A. Sankovski, Y. Zhang (2000). Geographical Distributions of Temperature Change for Scenarios of Greenhouse Gas and Sulfur Dioxide Emissions. Technological Forecasting and Social Change, 65(2), pp. 167-193, doi: http://dx.doi.org/10.1016/S0040-1625(99)00114-6.)
  154. Seneviratne et al., 2018 (S.I. Seneviratne, R. Wartenburger, B.P. Guillod, A.L. Hirsch, M.M. Vogel, V. Brovkin, D.P. Van Vuuren, N. Schaller, L. Boysen, K.V. Calvin, J. Doelman, P. Greve, P. Havlik, F. Humpenöder, T. Krisztin, D. Mitchell, A. Popp, K. Riahi, J. Rogelj, C.-F. Schleussner, J. Sillmann, E. Stehfest (2018). Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), doi: http://dx.doi.org/10.1098/rsta.2016.0450.)
  155. Smith et al., 2016a (P. Smith, S. J. Davis, F. Creutzig, S. Fuss, J. Minx, B. Gabrielle, E. Kato, R. B. Jackson, A. Cowie, E. Kriegler, D. P. Van Vuuren, J. Rogelj, P. Ciais, J. Milne, J. G. Canadell, D. McCollum, G. Peters, R. Andrew, V. Krey, G. Shrestha, P. Friedlingstein, T. Gasser, A. Grübler, W. K. Heidug, M. Jonas, C. D. Jones, F. Kraxner, E. Littleton, J. Lowe, J. R. Moreira, N. Nakicenovic, M. Obersteiner, A. Patwardhan, M. Rogner, E. Rubin, A. Sharifi, A. Torvanger, Y. Yamagata, J. Edmonds, C. Yongsung (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6(1), pp. 42-50, doi: http://dx.doi.org/10.1038/nclimate2870.)
  156. Smith et al., 2016b (S. J. Smith, S. Rao, K. Riahi, D. P. van Vuuren, K. V. Calvin, P. Kyle (2016). Future aerosol emissions: a multi-model comparison. Climatic Change, 138(1-2), pp. 13-24, doi: http://dx.doi.org/10.1007/s10584-016-1733-y.)
  157. Swart et al., 1990 (R. J. Swart, M. G. J. Den Elzen, J. Rotmans (1990). Emission scenarios for the Intergovernmental Panel on Climate Change. Milieu, 5(3), pp. 82-89.)
  158. Swart et al., 1993 (R. J. Swart, L. Bouwman, J. Olivier, G. J. Van den Born (1993). Inventory of greenhouse gas emissions in The Netherlands. AMBIO, 22(8), pp. 518-523.)
  159. Szogs et al., 2017 (S. Szogs, A. Arneth, P. Anthoni, J.C. Doelman, F. Humpenöder, A. Popp, T.A.M. Pugh, E. Stehfest (2017). Impact of LULCC on the emission of BVOCs during the 21st century. Atmospheric Environment, 165, pp. 73-87, doi: http://dx.doi.org/10.1016/j.atmosenv.2017.06.025.)
  160. Tabeau et al., 2017 (A. Tabeau, H. van Meijl, K. P. Overmars, E. Stehfest (2017). REDD policy impacts on the agri-food sector and food security. Food Policy, 66, pp. 73-87, doi: http://dx.doi.org/10.1016/j.foodpol.2016.11.006.)
  161. Tiktak et al., 1992 (A. Tiktak, A. H. Bakema, K. F. De Boer, J. W. Erisman, J. J. M. Van Grinsven, C. Van Heerden, G. J. Heij, J. Kros, F. A. A. M. De Leeuw, J. G. Van Minnen, C. Van Der Salm, J. C. H. Voogd, W. De Vries (1992). Scenario analysis with the Dutch Acidification Systems (DAS) model: An example for forests and forest soils. Studies in Environmental Science, 50(C), pp. 319-340, doi: http://dx.doi.org/10.1016/S0166-1116(08)70127-4.)
  162. Toreti et al., 2020 (Andrea Toreti, Delphine Deryng, Francesco N. Tubiello, Christoph Müller, Bruce A. Kimball, Gerald Moser, Kenneth Boote, Senthold Asseng, Thomas A. M. Pugh, Eline Vanuytrecht, Håkan Pleijel, Heidi Webber, Jean-Louis Durand, Frank Dentener, Andrej Ceglar, Xuhui Wang, Franz Badeck, Remi Lecerf, Gerard W. Wall, Maurits van den Berg, Petra Hoegy, Raul Lopez-Lozano, Matteo Zampieri, Stefano Galmarini, Garry J. O’Leary, Remy Manderscheid, Erik Mencos Contreras & Cynthia Rosenzweig (2020). Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food, 1, pp. 775-782, doi: http://dx.doi.org/https://doi.org/10.1038/s43016-020-00195-4.)
  163. Van Den Berg et al., 2016 (M. van den Berg, K. Neumann, D. P. van Vuuren, A. F. Bouwman, T. Kram, J. Bakkes (2016). Exploring resource efficiency for energy, land and phosphorus use: Implications for resource scarcity and the global environment. Global Environmental Change, 36, pp. 21-34, doi: http://dx.doi.org/10.1016/j.gloenvcha.2015.09.016.)
  164. Van Der Sluijs, 1995 (J. P. Van Der Sluijs (1995). Uncertainty management in integrated modelling, the IMAGE case. Studies in Environmental Science, 65(PART B), pp. 1401-1406, doi: http://dx.doi.org/10.1016/S0166-1116(06)80179-2.)
  165. Van Dijk et al., 2020 (van Dijk M., Gramberger M., Laborde D., Mandryk M., Shutes L., Stehfest E., Valin H., Faradsch K. (2020). Stakeholder-designed scenarios for global food security assessments. Global Food Security, 24, doi: http://dx.doi.org/10.1016/j.gfs.2020.100352.)
  166. Van Grinsven et al., 1992 (J. J. M. van Grinsven, C. van Heerden, J. G. van Minnen (1992). The Dutch Acidification Systems (DAS) model: The forest Module SOILVEG. Studies in Environmental Science, 50(C), pp. 525, doi: http://dx.doi.org/10.1016/S0166-1116(08)70142-0.)
  167. Van Meijl et al., 2020 (van Meijl H., Shutes L., Valin H., Stehfest E., van Dijk M., Kuiper M., Tabeau A., van Zeist W.-J., Hasegawa T., Havlik P. (2020). Modelling alternative futures of global food security: Insights from FOODSECURE. Global Food Security, 25, doi: http://dx.doi.org/10.1016/j.gfs.2020.100358.)
  168. Van Meijl et al., 2020b (Hans van Meijl, Andrzej Tabeau, Elke Stehfest, Jonathan Doelman and Paul Lucas (2020). How food secure are the green, rocky and middle roads: food security effects in different world development paths. Environmental Research Communications, 2(3), doi: http://dx.doi.org/https://doi.org/10.1088/2515-7620/ab7aba.)
  169. Van Minnen et al., 1995 (J. G. Van Minnen, R. Meijers, L. C. Braat (1995). Application of the forsol model to the spruce site at Solling, Germany. Ecological Modelling, 83(1-2), pp. 197-205, doi: http://dx.doi.org/10.1016/0304-3800(95)00098-G.)
  170. Van Minnen et al., 1995b (J. G. Van Minnen, K. Klein Goldewijk, R. Leemans (1995). The importance of feedback processes and vegetation transition in the terrestrial carbon cycle. Journal of Biogeography, 22(4-5), pp. 805-814.)
  171. Van Minnen et al., 2000b (J. G. Van Minnen, J. Alcamo, W. Haupt (2000). Deriving and applying response surface diagrams for evaluating climate change impacts on crop production. Climatic Change, 46(3), pp. 317-338, doi: http://dx.doi.org/10.1023/A:1005651327499.)
  172. Van Ruijven et al. erratum, 2017 (B.J. van Ruijven, D.P. van Vuuren, W. Boskaljon, M. Neelis, D. Saygin, M.K. Patel (2017).)
  173. Van Sluisveld et al., 2016 (M. A. E. van Sluisveld, S. H. Martínez, V. Daioglou, D. P. van Vuuren (2016). Exploring the implications of lifestyle change in 2°C mitigation scenarios using the IMAGE integrated assessment model. Technological Forecasting and Social Change, 102, pp. 309-319, doi: http://dx.doi.org/10.1016/j.techfore.2015.08.013.)
  174. Van Sluisveld et al., 2017 (M.A.E. van Sluisveld, A.F. Hof, D.P. van Vuuren, P. Boot, P. Criqui, F.C. Matthes, J. Notenboom, S.L. Pedersen, B. Pfluger, J. Watson (2017). Low-carbon strategies towards 2050: Comparing ex-ante policy evaluation studies and national planning processes in Europe. Environmental Science and Policy, 78, pp. 89-96, doi: http://dx.doi.org/10.1016/j.envsci.2017.08.022.)
  175. Van Sluisveld et al., 2018 (M.A.E. van Sluisveld, M.J.H.M. Harmsen, D.P. van Vuuren, V. Bosetti, C. Wilson, B. van der Zwaan (2018). Comparing future patterns of energy system change in 2 °C scenarios to expert projections. Global Environmental Change, 50, pp. 201-211, doi: http://dx.doi.org/10.1016/j.gloenvcha.2018.03.009.)
  176. Van Soest et al., 2017a (H.L. van Soest, H.S. de Boer, M. Roelfsema, M.G.J. den Elzen, A. Admiraal, D.P. van Vuuren, A.F. Hof, M. van den Berg, M.J.H.M. Harmsen, D.E.H.J. Gernaat, N. Forsell (2017). Early action on Paris Agreement allows for more time to change energy systems. Climatic Change, 144(2), pp. 165-179, doi: http://dx.doi.org/10.1007/s10584-017-2027-8.)
  177. Van Soest et al., 2017b (H.L. Van Soest, L.A. Reis, L. Drouet, D.P. Van Vuuren, M.G.J. Den Elzen, M. Tavoni, K. Akimoto, K.V. Calvin, P. Fragkos, A. Kitous, G. Luderer, K. Riahi (2017). Low-emission pathways in 11 major economies: Comparison of cost-optimal pathways and Paris climate proposals. Climatic Change, 142(3-4), pp. 491-504, doi: http://dx.doi.org/10.1007/s10584-017-1964-6.)
  178. Van Vuuren and Smeets, 2000 (D. P. van Vuuren, E. M. W. Smeets (2000). Ecological footprints of Benin, Bhutan, Costa Rica and the Netherlands. Ecological Economics, 34(1), pp. 115-130, doi: http://dx.doi.org/10.1016/S0921-8009(00)00155-5.)
  179. Van Vuuren et al., 1999 (D. P. Van Vuuren, B. J. Strengers, H. J. M. De Vries (1999). Long-term perspectives on world metal use-a system-dynamics model. Resources Policy, 25(4), pp. 239-255, doi: http://dx.doi.org/10.1016/S0301-4207(99)00031-8.)
  180. Van Vuuren et al., 2016a (D. P. Van Vuuren, P. L. Lucas, T. Häyhä, S. E. Cornell, M. Stafford-Smith (2016). Horses for courses: Analytical tools to explore planetary boundaries. Earth System Dynamics, 7(1), pp. 267-279, doi: http://dx.doi.org/10.5194/esd-7-267-2016.)
  181. Van Vuuren et al., 2016b (D. P. Van Vuuren, H. Van Soest, K. Riahi, L. Clarke, V. Krey, E. Kriegler, J. Rogelj, M. Schaeffer, M. Tavoni (2016). Carbon budgets and energy transition pathways. Environmental Research Letters, 11(7), doi: http://dx.doi.org/10.1088/1748-9326/11/7/075002.)
  182. Van Vuuren et al., 2017a (D. P. van Vuuren, K. Riahi, K. Calvin, R. Dellink, J. Emmerling, S. Fujimori, S. Kc, E. Kriegler, B. O'Neill (2017). The Shared Socio-economic Pathways: Trajectories for human development and global environmental change. Global Environmental Change, 42, pp. 148-152, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.10.009.)
  183. Van Vuuren et al., 2017c (D.P. van Vuuren, O.Y. Edelenbosch, D.L. McCollum, K. Riahi (2017). A special issue on model-based long-term transport scenarios: Model comparison and new methodological developments to improve energy and climate policy analysis. Transportation Research Part D: Transport and Environment, 55, pp. 277-280, doi: http://dx.doi.org/10.1016/j.trd.2017.05.003.)
  184. Van Zeist et al., 2020 (W.-J. van Zeist, E. Stehfest, J.C. Doelman, H. Valin, K. Calvin, S. Fujimori, T. Hasegawa, P. Havlik, F. Humpenöder, P. Kyle, H. Lotze-Campen, D. Mason-D'Croz, H. van Meijl, A. Popp, T. B. Sulser, A. Tabeau, W. Verhagen, K. Wiebe (2020). Are scenario projections overly optimistic about future yield progress?. Global Environmental Change, 64, doi: http://dx.doi.org/https://doi.org/10.1016/j.gloenvcha.2020.102120.)
  185. Van der Esch et al., 2021 (Stefan van der Esch, Annelies Sewell, Michel Bakkenes, Ezra Berkhout, Jonathan Doelman, Elke Stehfest, Christoph Langhans, Arno Bouwman, Ben ten Brink (2021). The global potential for land restoration: Scenarios for the Global Land Outlook 2, PBL, PBL, Den Haag. Link to PBL-website: https://www.pbl.nl/en/publications/the-global-potential-for-land-restoration-scenarios-for-the-global-land-outlook-2.)
  186. Vaughan et al., 2018 (N.E. Vaughan, C. Gough, S. Mander, E.W. Littleton, A. Welfle, D.E.H.J. Gernaat, D.P. Van Vuuren (2018). Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environmental Research Letters, 13(4), doi: http://dx.doi.org/10.1088/1748-9326/aaaa02.)
  187. Vermaat et al., 2016 (J. E. Vermaat, F. A. Hellmann, A. J. A. van Teeffelen, J. van Minnen, R. Alkemade, R. Billeter, C. Beierkuhnlein, L. Boitani, M. Cabeza, C. K. Feld, B. Huntley, J. Paterson, M. F. WallisDeVries (2016). Differentiating the effects of climate and land use change on European biodiversity: A scenario analysis. AMBIO, pp. 1-14, doi: http://dx.doi.org/10.1007/s13280-016-0840-3.)
  188. Visconti et al., 2016 (P. Visconti, M. Bakkenes, D. Baisero, T. Brooks, S. H. M. Butchart, L. Joppa, R. Alkemade, M. Di Marco, L. Santini, M. Hoffmann, L. Maiorano, R. L. Pressey, A. Arponen, L. Boitani, A. E. Reside, D. P. van Vuuren, C. Rondinini (2016). Projecting Global Biodiversity Indicators under Future Development Scenarios. Conservation Letters, 9(1), pp. 5-13, doi: http://dx.doi.org/10.1111/conl.12159.)
  189. Visser et al., 2018 (H. Visser, S. Dangendorf, D.P. Van Vuuren, B. Bregman, A.C. Petersen (2018). Signal detection in global mean temperatures after "Paris": An uncertainty and sensitivity analysis. Climate of the Past, 14(2), pp. 139-155, doi: http://dx.doi.org/10.5194/cp-14-139-2018.)
  190. Vrontisi et al., 2018 (Z. Vrontisi, G. Luderer, B. Saveyn, K. Keramidas, A.R. Lara, L. Baumstark, C. Bertram, H.S. De Boer, L. Drouet, K. Fragkiadakis, O. Fricko, S. Fujimori, C. Guivarch, A. Kitous, V. Krey, E. Kriegler, E.Ó. Broin, L. Paroussos, D. Van Vuuren (2018). Enhancing global climate policy ambition towards a 1.5 °c stabilization: A short-term multi-model assessment. Environmental Research Letters, 13(4), doi: http://dx.doi.org/10.1088/1748-9326/aab53e.)
  191. Walsh et al., 2017 (B. Walsh, P. Ciais, I.A. Janssens, J. Peñuelas, K. Riahi, F. Rydzak, D.P. Van Vuuren, M. Obersteiner (2017). Pathways for balancing CO2 emissions and sinks. Nature Communications, 8, doi: http://dx.doi.org/10.1038/ncomms14856.)
  192. Winsemius et al., 2016 (H. C. Winsemius, J. C. J. H. Aerts, L. P. H. Van Beek, M. F. P. Bierkens, A. Bouwman, B. Jongman, J. C. J. Kwadijk, W. Ligtvoet, P. L. Lucas, D. P. Van Vuuren, P. J. Ward (2016). Global drivers of future river flood risk. Nature Climate Change, 6(4), pp. 381-385, doi: http://dx.doi.org/10.1038/nclimate2893.)
  193. Wollenberg et al., 2016 (E. Wollenberg, M. Richards, P. Smith, P. Havlík, M. Obersteiner, F. N. Tubiello, M. Herold, P. Gerber, S. Carter, A. Reisinger, D. P. van Vuuren, A. Dickie, H. Neufeldt, B. O. Sander, R. Wassmann, R. Sommer, J. E. Amonette, A. Falcucci, M. Herrero, C. Opio, R. M. Roman-Cuesta, E. Stehfest, H. Westhoek, I. Ortiz-Monasterio, T. Sapkota, M. C. Rufino, P. K. Thornton, L. Verchot, P. C. West, J. F. Soussana, T. Baedeker, M. Sadler, S. Vermeulen, B. M. Campbell (2016). Reducing emissions from agriculture to meet the 2 °C target. Global Change Biology, 22(12), pp. 3859-3864, doi: http://dx.doi.org/10.1111/gcb.13340.)
  194. Zuidema et al., 1994 (G. Zuidema, G. J. van den Born, J. Alcamo, G. J. J. Kreileman (1994). Simulating changes in global land cover as affected by economic and climatic factors. Water, Air, & Soil Pollution, 76(1-2), pp. 163-198, doi: http://dx.doi.org/10.1007/BF00478339.)

View (previous 750 | next 750) (20 | 50 | 100 | 250 | 500)