Agricultural economy/References

Jump to: navigation, search

Key publications

Bijl et al., 2017
D.L. Bijl, P.W. Bogaart, S.C. Dekker, E. Stehfest, B.J.M. de Vries, D.P. van Vuuren (2017). A physically-based model of long-term food demand. Global Environmental Change, 45, pp. 47-62, doi:

Stehfest et al., 2013
E. Stehfest, M. Berg, G. Woltjer, S. Msangi, H. Westhoek (2013). Options to reduce the environmental effects of livestock production - Comparison of two economic models. Agricultural Systems, 114, pp. 38-53, doi:
Link to PBL-website:

Von Lampe et al., 2014
Von Lampe, M., Willenbockel D., Calvin K., Fujimori S., Hasegawa T., Havlik P., Kyle P., Lotze-Campen H., Mason d’Croz D., Nelson G., Sands R., Schmitz C., Tabeau A., Valin H., van der Mensbrugghe D. and van Meijl H. (2014). Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison.. Agricultural Economics, Special Issue on Global Model Intercomparison, 45(1), pp. 3-20, doi:

Woltjer et al., 2014
G.B. Woltjer, M. Kuiper, A. Kavallari, H. van Meijl, J. Powell, M. Rutten, L. Shutes, A. Tabeau (2014). , LEI, The Hague.

All cited references

Aguiar et al., 2016
Angel Aguiar, Badri Narayanan, Robert McDougall (2016). An Overview of the GTAP 9 Data Base. Journal of Global Economic Analysis, 1(1), doi:

Alexandratos and Bruinsma, 2012
Nikos Alexandratos, J. Bruinsma (2012). World agriculture towards 2030/2050: the 2012 revision, FAO, Food and Agriculture Organization of the United Nations(URL:

Armington, 1969
P. S. Armington (1969). A theory of demand for products distinguished by place of production.. IMF Staff papers, 16, pp. 159-76.

Banse et al., 2008
M Banse, H van Meijl, A Tabeau, G Woltjer (2008). Will EU biofuel policies affect global agricultural markets?. European Review of Agricultural Economics, 35, pp. 117-141.

Britz, 2003
W. Britz (2003). Major enhancements of @2030 Modelling system.URL:

Bruinsma, 2003
J. Bruinsma (2003). World agriculture: towards 2015/2030., An FAO perspective, Earthscan, London.

Carpenter et al., 2006
S.R. Carpenter, P. Pingali, E.M. Bennet, M.B. Zurek (2006). Ecosystems and human well-being: scenarios, Millennium Ecosystem Assessment - MA (2005) project (eds.), Island Press, Washington, D.C., 2.

Eickhout et al., 2009
B. Eickhout, H. van Meijl, A. Tabeau, E. Stehfest (2009). The impact of environmental and climate constraints on global food supply. In: T.W. HertelS.K. RoseR.S.J. Tol (eds.), Economic Analysis of Land Use in Global Climate Change Policy. Routledge, New York, pp. 85-106, URL: 10.4324/9780203882962.

Frank et al., 2019
S. Frank, P. Havlík, E. Stehfest, H. van Meijl, P. Witzke, I. Pérez-Domínguez, M. van Dijk, J.C. Doelman, T. Fellmann, J.F.L. Koopman, A. Tabeau, H. Valin (2019). Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change, 9(1), pp. 66-72, doi:

Helming et al., 2010
J Helming, S Jansen, H van Meijl, A Tabeau (2010). European farming and post-2013 CAP measures, LEI Wageningen UR, Wageningen.

Hertel, 1997
T.W. Hertel (1997). Global trade analysis: modeling and applications, Cambridge University Press, Cambridge, United Kingdom.

Hertel, 2011
T.W. Hertel (2011). The global supply and demand for agricultural land in 2050: A perfect storm in the making?. American Journal of Applied Economics, 93, pp. 259-275.

Huang et al., 2004
H. Huang, F. van Tongeren, F. Dewbre, H. van Meijl (2004). A new representation of agricultural production technology in GTAP.Paper presented at the Seventh Annual Conference on Global Economic Analysis.Washington, USA..

Kallio et al., 2004
A.M.I. Kallio, A. Moiseyev, B. Solberg (2004). The Global Forest Sector Model EFI-GTM - the model structure, EFI.

Nelson et al., 2014
G. C. Nelson, H. Valin, R.D. Sands, P. Havlík, H. Ahammad, D. Deryng, J. Elliott, S. Fujimori, T. Hasegawa, E. Heyhoe, P. Kyle, M. Von Lampe, H. Lotze-Campen, D. Mason d’Croz, H.van Meijl, D. van der Mensbrugghe, Ch. Müller, A. Popp, R. Robertson, S. Robinson, E. Schmid, C. Schmitz, A.Tabeau, D. Willenbockel (2014). Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 111(9), pp. 3274-3279, doi:

Overmars et al., 2014
K. P. Overmars, E. Stehfest, A. Tabeau, H. van Meijl, A. M. Beltrán, T. Kram (2014). Estimating the opportunity costs of reducing carbon dioxide emissions via avoided deforestation, using integrated assessment modelling. Land Use Policy, 41, pp. 45-60, doi:
Link to PBL-website:

PBL, 2010
PBL (2010). Rethinking global biodiversity strategies, PBL Netherlands Environmental Assessment Agency, The Hague. Link to PBL-website:

PBL, 2011
PBL (2011). The protein puzzle, PBL Netherlands Environmental Assessment Agency, The Hague. Link to PBL-website:

Stehfest et al., 2013
E. Stehfest, M. Berg, G. Woltjer, S. Msangi, H. Westhoek (2013). Options to reduce the environmental effects of livestock production - Comparison of two economic models. Agricultural Systems, 114, pp. 38-53, doi:
Link to PBL-website:

Stehfest et al., 2019
Elke Stehfest, Willem-Jan van Zeist, Hugo Valin, Petr Havlik, Alexander Popp, Page Kyle, Andrzej Tabeau, Daniel Mason-D’Croz, Tomoko Hasegawa, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Shinichiro Fujimori, Florian Humpenöder, Hermann Lotze-Campen, Hans van Meijl and Keith Wiebe (2019). Key determinants of global land-use projections. Nature Communications, 10, doi:

Van Meijl et al., 2006
H. Van Meijl, T. Van Rheenen, A. Tabeau, B. Eickhout (2006). The impact of different policy environments on agricultural land use in Europe. Agriculture, Ecosystems and Environment, 114(1), pp. 21-38, doi:

Van Meijl et al., 2018
H. Van Meijl, P. Havlik, H. Lotze-Campen, E. Stehfest, P. Witzke, I.P. Domínguez, B.L. Bodirsky, M. Van Dijk, J. Doelman, T. Fellmann, F. Humpenöder, J.F.L. Koopman, C. Müller, A. Popp, A. Tabeau, H. Valin, W.-J. Van Zeist (2018). Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 13(6), doi:

Van Vuuren et al., 2018
D.P. Van Vuuren, E. Stehfest, D.E.H.J. Gernaat, M. Van Den Berg, D.L. Bijl, H.S. De Boer, V. Daioglou, J.C. Doelman, O.Y. Edelenbosch, M. Harmsen, A.F. Hof, M.A.E. Van Sluisveld (2018). Alternative pathways to the 1.5 °c target reduce the need for negative emission technologies. Nature Climate Change, 8(5), pp. 391-397, doi:

Verburg et al., 2009
R. Verburg, E. Stehfest, G. Woltjer, B. Eickhout (2009). The effect of agricultural trade liberalisation on land-use related greenhouse gas emissions. Global Environmental Change, 19(4), pp. 434-446, doi:
Link to PBL-website:

Westhoek et al., in preparation
H. Westhoek, E. Stehfest, M. Berg van den, G Woltjer (in preparation). Effects on global agricultural greenhouse gas emissions from changes in EU diets and husbandry systems. Animals - in preparation; available on request.

Woltjer et al., 2011
G.B. Woltjer, M. Kuiper, H. van Meijl (2011). Chapter 2: MAGNET, The agricultural world in equations: An overview of the main models used at LEI. LEI, The Hague.

Woltjer, 2011
G.B. Woltjer (2011). Meat consumption, production and land use: model implementation and scenarios, WOT Natuur and Milieu, Wageningen(URL: