Energy conversion/References
Key publications
De Boer and Van Vuuren, 2017
H.S. de Boer and D.P. van Vuuren (2017).
Representation of variable renewable energy source in TIMER, an aggregated energy system simulation model. Energy Economics, 64, pp. 600-611, doi: http://dx.doi.org/http://doi.org/10.1016/j.eneco.2016.12.006.
Link to PBL-website: http://www.pbl.nl/en/publications/representation-of-variable-renewable-energy-sources-in-timer-an-aggregated-energy-system-simulation-model.
Hendriks et al., 2004a
C. Hendriks, M Harmelink, K. Burges, K. Ransel (2004).
Power and heat productions: plant developments and grid losses, Ecofys, Utrecht.
Hoogwijk et al., 2007
M. Hoogwijk, D. van Vuuren, B. de Vries, W. Turkenburg (2007).
Exploring the impact on cost and electricity production of high penetration levels of intermittent electricity in OECD Europe and the USA, results for wind energy. Energy, 32(8), pp. 1381-1402, doi: http://dx.doi.org/10.1016/j.energy.2006.09.004.
Link to PBL-website: http://www.pbl.nl/en/publications/2007/Exploringtheimpactoncostandelectricityproductionofhighpenetrationlevelsofintermittentelectricityin.
All cited references
DEA, 2018
Danish Energy Agency (2018).
Note on technology costs for offshore wind farms and the background for updating CAPEX and OPEX in the technology catalogue datasheets, Danish Ministry of Energy, Utilities and Climate(URL: https://ens.dk/sites/ens.dk/files/Analyser/havvindsnotat_translation_eng_final.pdf).
De Boer and Van Vuuren, 2017
H.S. de Boer and D.P. van Vuuren (2017).
Representation of variable renewable energy source in TIMER, an aggregated energy system simulation model. Energy Economics, 64, pp. 600-611, doi: http://dx.doi.org/http://doi.org/10.1016/j.eneco.2016.12.006.
Link to PBL-website: http://www.pbl.nl/en/publications/representation-of-variable-renewable-energy-sources-in-timer-an-aggregated-energy-system-simulation-model.
Gernaat et al., 2014
D. E. H. J. Gernaat, D. P. Van Vuuren, J. Van Vliet, P. Sullivan, D. J. Arent (2014).
Global long-term cost dynamics of offshore wind electricity generation. Energy, 76, pp. 663-672, doi: http://dx.doi.org/10.1016/j.energy.2014.08.062.
Link to PBL-website: http://www.pbl.nl/node/61165.
Hendriks et al., 2004b
C. Hendriks, W. Graus, F. van Bergen (2004).
Global carbon dioxide storage potential and costs, Ecofys, Utrecht.
Hoogwijk, 2004
M. Hoogwijk (2004).
On the global and regional potential of renewable energy sources.Science, Technology and Society.Ph.D. thesis.Utrecht University.Utrecht, The Netherlands.URL: http://www.library.uu.nl/digiarchief/dip/diss/2004-0309-123617/full.pdf
IEA, 2019
International Energy Agency (2019).
The Future of Hydrogen(URL: https://www.iea.org/reports/the-future-of-hydrogen).
IEA, 2021
IEA (2021).
World Energy Outlook 2021, International Energy Agency(URL: https://www.iea.org/reports/world-energy-outlook-2021).
IRENA, 2016
IRENA (2016).
REsource.International Renewable Energy Agency.URL: http://resourceirena.irena.org/
IRENA, 2020
IRENA (2020).
Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5oC climate goal, International Renewable Energy Agency(URL: https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction).
IRENA, 2022
IRENA (2022).
Statistics Time Series.International Renewable Energy Agency.URL: https://www.irena.org/Data/View-data-by-topic/Capacity-and-Generation/Statistics-Time-Series
Kruyt et al., 2009
B. Kruyt, D. P. van Vuuren, H. J. M. de Vries, H. Groenenberg (2009).
Indicators for energy security. Energy Policy, 37(6), pp. 2166-2181, doi: http://dx.doi.org/10.1016/j.enpol.2009.02.006.
Link to PBL-website: http://www.pbl.nl/en/publications/2009/Indicators-for-energy-security.
Köberle et al., 2015
Alexandre C. Köberle, David E.H.J. Gernaat, Detlef P. van Vuuren (2015).
Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation. Energy, 89, pp. 739-756, doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.energy.2015.05.145.
Link to PBL-website: http://www.pbl.nl/en/publications/assessing-current-and-future-techno-economic-potential-of-concentrated-solar-power-and-photovoltaic-electricity.
Luderer et al., 2017
G. Luderer, R.C. Pietzcker, S. Carrara, H.S. de Boer, S. Fujimori, N. Johnson, S. Mima, D. Arent (2017).
Assessment of wind and solar power in global low-carbon energy scenarios: An introduction. Energy Economics, 64(May 2017), pp. 542-551, doi: http://dx.doi.org/10.1016/j.eneco.2017.03.027.
Link to PBL-website: http://www.pbl.nl/en/publications/assessment-of-wind-and-solar-power-in-global-low-carbon-energy-scenarios-an-introduction.
MIT, 2003
MIT (2003).
The future of nuclear power - an interdisciplinary MIT study, Massachusetts Institute of Technology, Cambridge, USA.
PBL, 2012
PBL (2012).
Roads from Rio+20: Pathways to achieve global sustainability goals by 2050, D.P. Van VuurenM.T.J. Kok (eds.), PBL Netherlands Environmental Assessment Agency, The Hague. Link to PBL-website: http://www.pbl.nl/en/publications/2012/roads-from-rio20.
Pietzcker et al., 2017
R. Pietzcker, F. Ueckerdt, S. Carrara, H.S. de Boer, J. Despres, S. Fujimori, N. Johnson, A. Kitous, Y. Scholz, P. Sullivan, G. Luderer (2017).
System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches. Energy Economics, 64(May 2017), pp. 583-599, doi: http://dx.doi.org/10.1016/j.eneco.2016.11.018.
S&P, 2017
S&P Global Market Intelligence (2017).
World Electric Power Plants Database, March 2017.Harvard Dataverse.URL: https://doi.org/10.7910/DVN/OKEZ8A
Schoots et al., 2008
K.Schoots, F.Ferioli, G.J.Kramer, B.C.C.van der Zwaan (2008).
Learning curves for hydrogen production technology: An assessment of observed cost reductions. International Journal of Hydrogen Energy, 33(11), pp. 2630-2645, doi: http://dx.doi.org/https://doi.org/10.1016/j.ijhydene.2008.03.011.
Ueckerdt et al., 2016
F. Ueckerdt, R. Pietzcker, Y. Scholz, D. Stetter, A. Giannousakis, G. Luderer (2016).
Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model. Energy Economics, doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.eneco.2016.05.012.
Van Ruijven et al., 2007
B. van Ruijven, D. P. van Vuuren, B. de Vries (2007).
The potential role of hydrogen in energy systems with and without climate policy. International Journal of Hydrogen Energy, 32(12), pp. 1655-1672, doi: http://dx.doi.org/10.1016/j.ijhydene.2006.08.036.
Link to PBL-website: http://www.pbl.nl/en/publications/2007/Thepotentialroleofhydrogeninenergysystemswithandwithoutclimatepolicy.
Van Vuuren, 2007
D.P. van Vuuren (2007).
Energy systems and climate policy: Long-term scenarios for an uncertain future.Science, Technology and Society.Ph.D. thesis.pp 326.Utrecht University.Utrecht, The Netherlands.
WEC, 2010
WEC (2010).
Energy resources. Online data resource., World Energy Council, London.