Land and biodiversity policies/Land-use regulation: Difference between revisions

From IMAGE
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{ZZ_PolicyResponsePartTemplate
{{ZZ_PolicyResponsePartTemplate
|PageLabel=Targeting agricultural demand
|PageLabel=Targeting agricultural demand
|Sequence=2
|Sequence=3
|Description=<h2>Interventions targeting the agricultural production system</h2>
|Description=<h2>Interventions targeting the agricultural production system</h2>
The production system describes the way animals are raised and crops are cultivated; for example, which and how much input is used to produce one unit of product, and the amount of wood harvested per square kilometre of forest. Those characteristics then define the environmental impacts. Several interventions may increase the efficiency of production systems, and should thus lead to a lower use of input or to a reduction in environmental impacts.  
The production system describes the way animals are raised and crops are cultivated; for example, which and how much input is used to produce one unit of product, and the amount of wood harvested per square kilometre of forest. Those characteristics then define the environmental impacts. Several interventions may increase the efficiency of production systems, and should thus lead to a lower use of input or to a reduction in environmental impacts.  
Line 14: Line 14:
{{ZZ PolicyInterventionSetTemplate
{{ZZ PolicyInterventionSetTemplate
|Header=Improving cropping systems or varieties
|Header=Improving cropping systems or varieties
|Description=Improved cropping systems or varieties could increase the efficiency of the use of inputs, including water and nutrients. Combined with an application of those inputs that are well tuned to the requirements of the crops, this would lead to fewer nitrogen emissions or less water use per tonne of crop and, ultimately, would reduce the impacts on biodiversity and climate. Such improved management could also lead to higher yields (see below). Improved systems could imply a shift in the ratio between the factors used, such as labour, capital, land, fertilizer, water and other inputs. Therefore, the cost price of agricultural products may change, resulting in other market prices and a changed consumption.  
|Description=Improved cropping systems or varieties could increase the efficiency of the use of inputs, including water and nutrients. Combined with an application of those inputs that are well tuned to the requirements of the crops, this would lead to fewer nitrogen emissions or less water use per tonne of crop and, ultimately, would reduce the impacts on biodiversity and climate. Such improved management could also lead to higher yields (see below). Improved systems could imply a shift in the ratio between the factors used, such as labour, capital, land, fertilizer, water and other inputs. Therefore, the cost price of agricultural products may change, resulting in other market prices and a changed consumption.
}}
}}
{{ZZ PolicyInterventionSetTemplate
{{ZZ PolicyInterventionSetTemplate
|Header=Crop and grass yields
|Header=Crop and grass yields
|Description=Yield increase can be induced by other crop varieties; for example, by increasing the potential yield or better management (thus, closing the yield gap). One should keep in mind that other – more suitable – crop varieties often also need other types of management in order to give higher yields.  
|Description=Yield increase can be induced by other crop varieties; for example, by increasing the potential yield or better management (thus, closing the yield gap). One should keep in mind that other – more suitable – crop varieties often also need other types of management in order to give higher yields.
}}
}}
{{ZZ PolicyInterventionSetTemplate
{{ZZ PolicyInterventionSetTemplate
|Header=Cropping intensity
|Header=Cropping intensity
|Description=Cropping intensity can be increased by multiple cropping (more harvests per year), which depends on climatic circumstances, or by decreasing the area that is left fallow. Both interventions would decrease the required production area for all crops, but it could also, locally, increase the environmental impacts per hectare of crops. Where lower area requirements decrease biodiversity and climate impacts, the environmental impacts per hectare could increase them again. Thus, to decrease biodiversity loss, yield increases should go hand in hand with system changes, which may result in fewer negative external impacts, as described for the intervention above. Increased cropping intensity increases the risk of soil degradation if cropping rotations or soil management are not adapted, as well.  
|Description=Cropping intensity can be increased by multiple cropping (more harvests per year), which depends on climatic circumstances, or by decreasing the area that is left fallow. Both interventions would decrease the required production area for all crops, but it could also, locally, increase the environmental impacts per hectare of crops. Where lower area requirements decrease biodiversity and climate impacts, the environmental impacts per hectare could increase them again. Thus, to decrease biodiversity loss, yield increases should go hand in hand with system changes, which may result in fewer negative external impacts, as described for the intervention above. Increased cropping intensity increases the risk of soil degradation if cropping rotations or soil management are not adapted, as well.
}}
}}
[[Page has default form::ZZ_PolicyResponsePartForm| ]]
[[Page has default form::ZZ_PolicyResponsePartForm| ]]

Revision as of 11:02, 6 March 2014