Carbon cycle and natural vegetation/Description: Difference between revisions

From IMAGE
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{ComponentDescriptionTemplate
{{ComponentDescriptionTemplate
|Reference=Prentice et al., 2007;  
|Reference=Prentice et al., 2007;
|Description=<h3>Vegetation types</h3>
|Description=<h3>Vegetation types</h3>
LPJmL is a Dynamic Global Vegetation Model ({{abbrTemplate|DGVM}}) that was developed initially to assess the role of the terrestrial biosphere in the global carbon cycle ([[Prentice et al., 2007]]). DGVMs simulate vegetation distribution and dynamics, using the concept of multiple plant functional types ({{abbrtemplate|PFT}}s) differentiated according to their bioclimatic (e.g. temperature requirement), physiological, morphological, and phenological (e.g. growing season) attributes, and competition for resources (light and water).  
LPJmL is a Dynamic Global Vegetation Model ({{abbrTemplate|DGVM}}) that was developed initially to assess the role of the terrestrial biosphere in the global carbon cycle ([[Prentice et al., 2007]]). DGVMs simulate vegetation distribution and dynamics, using the concept of multiple plant functional types ({{abbrTemplate|PFT}}s) differentiated according to their bioclimatic (e.g. temperature requirement), physiological, morphological, and phenological (e.g. growing season) attributes, and competition for resources (light and water).  


To aggregate the vast diversity of plant species worldwide, with respect to major differences relevant to the carbon cycle, [[LPJmL model|LPJmL]] distinguishes nine plant functional types. These include e.g. tropical evergreen trees, temperate deciduous broad-leaved trees and C3 herbaceous plants. Plant dynamics are computed for each PFT present in a grid cell. As IMAGE uses the concept of biomes, combinations of PFTs in an area/grid cell are translated into a biome type (see [[Plant functional types]]).
To aggregate the vast diversity of plant species worldwide, with respect to major differences relevant to the carbon cycle, [[LPJmL model|LPJmL]] distinguishes nine plant functional types. These include e.g. tropical evergreen trees, temperate deciduous broad-leaved trees and C3 herbaceous plants. Plant dynamics are computed for each PFT present in a grid cell. As IMAGE uses the concept of biomes, combinations of PFTs in an area/grid cell are translated into a biome type (see [[Plant functional types]]).
Line 27: Line 27:
LPJmL and IMAGE are linked via an interface and starts in the simulation year of 1970. Before 1970, vegetation and soil carbon pools need to be initialised. This is done by using LPJmL first in a 1000-year spin up to initialise the natural ecosystems and their carbon pools and fluxes, followed by a 390-year spin up, in which agricultural land is gradually expanded based on historical [[HYDE databse|HYDE]] land-use data ([[Klein Goldewijk et al., 2011]]). The pool sizes of timber products for 1970 are based on literature estimates ([[Lauk et al., 2012]]).  
LPJmL and IMAGE are linked via an interface and starts in the simulation year of 1970. Before 1970, vegetation and soil carbon pools need to be initialised. This is done by using LPJmL first in a 1000-year spin up to initialise the natural ecosystems and their carbon pools and fluxes, followed by a 390-year spin up, in which agricultural land is gradually expanded based on historical [[HYDE databse|HYDE]] land-use data ([[Klein Goldewijk et al., 2011]]). The pool sizes of timber products for 1970 are based on literature estimates ([[Lauk et al., 2012]]).  


The linked IMAGE-LPJmL simulations start in 1970 with observed climate, followed by simulated climate from 2005 onwards (Component [[Atmospheric composition and climate]]). As the inter-annual variability in weather conditions is needed for the simulation of vegetation dynamics in IMAGE-LPJmL, smooth annual climate trends from IMAGE are superimposed with inter-annual variability fields, extracted from observed climate over the 1971–2000 period. To avoid repeating climate trends in these 30-year periods, annual anomalies are ordered at random before superimposition.  
The linked IMAGE-LPJmL simulations start in 1970 with observed climate, followed by simulated climate from 2005 onwards (Component [[Atmospheric composition and climate]]). As the inter-annual variability in weather conditions is needed for the simulation of vegetation dynamics in IMAGE-LPJmL, smooth annual climate trends from IMAGE are superimposed with inter-annual variability fields, extracted from observed climate over the 1971–2000 period. To avoid repeating climate trends in these 30-year periods, annual anomalies are ordered at random before superimposition.
 
 
 
 
 
}}
}}

Revision as of 10:16, 20 May 2014

Carbon cycle and natural vegetation module of LPJmL, in IMAGE 3.0
Flowchart Carbon cycle and natural vegetation. See also the Input/Output Table on the introduction page.

Model description of Carbon cycle and natural vegetation