Energy supply and demand: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
==The energy supply and demand model (TIMER)== | ==The energy supply and demand model (TIMER)== | ||
The IMage Energy Regional model, also referred to as [[TIMER model|TIMER]], has been developed to explore scenarios for the energy system in the broader context of the IMAGE global environmental assessment framework ([[De Vries et al., 2001]]; [[Van Vuuren, 2007]]). TIMER describes 12 primary energy carriers in 26 world regions and is used to analyse long-term trends in energy demand and supply in the context of the sustainable development challenges<ref>The words energy demand and energy use are often used interchangeably. However, in the past data were about statistical energy use. For the future, trends were extrapolated and denoted as energy demand, which in the model is assumed to be fully supplied and thus equal to use.</ref>. The model simulates long-term trends in energy use, issues related to depletion, energy-related greenhouse gas and other air polluting emissions, together with land-use demand for energy crops. The focus is on dynamic relationships in the energy system, such as inertia and learning-by-doing in capital stocks, depletion of the resource base and trade between regions. | The IMage Energy Regional model, also referred to as [[TIMER model|TIMER]], has been developed to explore scenarios for the energy system in the broader context of the IMAGE global environmental assessment framework ([[De Vries et al., 2001]]; [[Van Vuuren, 2007]]). TIMER describes 12 primary energy carriers in 26 world regions and is used to analyse long-term trends in energy demand and supply in the context of the sustainable development challenges<ref>The words energy demand and energy use are often used interchangeably. However, in the past data were about statistical energy use. For the future, trends were extrapolated and denoted as energy demand, which in the model is assumed to be fully supplied and thus equal to use.</ref>. The model simulates long-term trends in energy use, issues related to depletion, energy-related greenhouse gas and other air polluting emissions, together with land-use demand for energy crops. The focus is on dynamic relationships in the energy system, such as inertia and learning-by-doing in capital stocks, depletion of the resource base and trade between regions. | ||
Similar to other IMAGE components, TIMER is a simulation model. The results obtained depend on a single set of deterministic algorithms, according to which the system state in any future year is derived entirely from previous system states. In this respect, TIMER differs from most macroeconomic models, which let the system evolve on the basis of minimising cost or maximising utility under boundary conditions. As such, TIMER can be compared to energy simulation models, such as POLES ([[Criqui et al., 2003]]) and GCAM ([[Thomson et al., 2011]]). | Similar to other IMAGE components, TIMER is a simulation model. The results obtained depend on a single set of deterministic algorithms, according to which the system state in any future year is derived entirely from previous system states. In this respect, TIMER differs from most macroeconomic models, which let the system evolve on the basis of minimising cost or maximising utility under boundary conditions. As such, TIMER can be compared to energy simulation models, such as POLES ([[Criqui et al., 2003]]) and GCAM ([[Thomson et al., 2011]]). | ||
<references/> | <references/> | ||
== | ==Overview of TIMER== | ||
The energy | The energy model has three components: energy demand; energy conversion; and energy supply (Figure 4.1.1). The energy demand component describes how energy demand is determined for five economic sectors -industry, transport, residential, services and other sectors. The energy conversion components describes how carriers such as electricity and hydrogen are produced. Finally, the energy supply modules describe the production of primary energy carriers, and calculate prices endogenously for both primary and secondary energy carriers that drive investment in the technologies associated with these carriers. The energy flows in all three main components allow calculation of greenhouse gas and air pollutant emissions. | ||
The energy model TIMER focuses on long-term trends in energy supply and demand. It was mainly developed for analysing climate mitigation strategies and has also been used to explore other sustainability issues. These characteristics impose some limitations on the model. Firstly, the model cannot be used to examine macroeconomic consequences of mitigation strategies, such as GDP losses, because other aspects of the economy are not included. Secondly, the strategies depicted by the model are not necessarily optimal from an inter-temporal perspective because as a simulation model, there is no information on future development in a scenario (myopic). Instead, decisions are made on the basis of available model information at that time in the scenario. Finally, although the model has been used to analyse sustainability issues other than climate change, still much less options have been included to explore such policies (see Section 8.2). | |||
The energy | |||
|AggregatedComponent=Energy supply and demand | |AggregatedComponent=Energy supply and demand | ||
|FrameworkElementType=pressure component | |FrameworkElementType=pressure component | ||
}} | }} | ||
[[Page has default form::AggregatedComponentForm| ]] | [[Page has default form::AggregatedComponentForm| ]] |
Revision as of 10:10, 5 May 2014
Composition of Energy supply and demand Additional info |
Component is implemented in: |
|
Projects/Applications |
Models/Databases |
Key publications |
References |
Description of Energy supply and demand