Energy demand/Description: Difference between revisions

From IMAGE
Jump to navigation Jump to search
No edit summary
No edit summary
Line 41: Line 41:
The equation takes account of direct production costs and also energy and carbon taxes and premium values. The last two reflect non-price factors determining market shares, such as preferences, environmental policies, infrastructure (or the lack of infrastructure) and strategic considerations. The premium values are determined in the model calibration process in order to correctly simulate historical market shares on the basis of simulated price information. The same parameters are used in scenarios to simulate the assumption on societal preferences for clean and/or convenient fuels. However, the market shares of traditional biomass and secondary heat are determined by exogenous scenario parameters (except for the residential sector discussed below). Non-energy use of energy carriers is modelled on the basis of exogenously assumed intensity of representative non-energy uses (chemicals) and on a price-driven competition between the various energy carriers ([[Daioglou et al., submitted]]).
The equation takes account of direct production costs and also energy and carbon taxes and premium values. The last two reflect non-price factors determining market shares, such as preferences, environmental policies, infrastructure (or the lack of infrastructure) and strategic considerations. The premium values are determined in the model calibration process in order to correctly simulate historical market shares on the basis of simulated price information. The same parameters are used in scenarios to simulate the assumption on societal preferences for clean and/or convenient fuels. However, the market shares of traditional biomass and secondary heat are determined by exogenous scenario parameters (except for the residential sector discussed below). Non-energy use of energy carriers is modelled on the basis of exogenously assumed intensity of representative non-energy uses (chemicals) and on a price-driven competition between the various energy carriers ([[Daioglou et al., submitted]]).


==Heavy industry submodel==
==Heavy industry==
The heavy industry submodule was include for the steel and cement sectorsr ([[Van Ruijven et al., 2013]]). These two sectors represented about 8% of global energy use and 13% of global anthropogenic greenhouse gas emissions in 2005. The generic structure of the energy demand module was adapted as follows:
The heavy industry submodule was include for the steel and cement sectors ([[Van Ruijven et al., 2013]]). These two sectors represented about 8% of global energy use and 13% of global anthropogenic greenhouse gas emissions in 2005. The generic structure of the energy demand module was adapted as follows:
*Activity is described in terms of production of tonnes cement and steel. The regional demand for these commodities is determined by a relationship similar to the formulation of the structural change discussed above. Both cement and steel can be traded but this is less important for cement. Historically, trade patterns have been prescribed but future production is assumed to shift slowly to producers with the lowest costs.  
*Activity is described in terms of production of tonnes cement and steel. The regional demand for these commodities is determined by a relationship similar to the formulation of the structural change discussed above. Both cement and steel can be traded but this is less important for cement. Historically, trade patterns have been prescribed but future production is assumed to shift slowly to producers with the lowest costs.  
*The demand after trade can be met from production that uses a mix of technologies. Each technology is characterised by costs and energy use per unit of production, both of which decline slowly over time. The actual mix of technologies used to produce steel and cement in the model is derived from a multinominal logit equation, and results in a larger market share for the technologies with the lowest costs. The autonomous improvement of these technologies leads to an autonomous increase in energy efficiency. The selection of technologies represents the price-induced improvement in energy efficiency. Fuel substitution is partly determined on the basis of price, but also depends on the type of technology because some technologies can only use specific energy carriers (e.g., electricity for electric arc furnaces).  
*The demand after trade can be met from production that uses a mix of technologies. Each technology is characterised by costs and energy use per unit of production, both of which decline slowly over time. The actual mix of technologies used to produce steel and cement in the model is derived from a multinominal logit equation, and results in a larger market share for the technologies with the lowest costs. The autonomous improvement of these technologies leads to an autonomous increase in energy efficiency. The selection of technologies represents the price-induced improvement in energy efficiency. Fuel substitution is partly determined on the basis of price, but also depends on the type of technology because some technologies can only use specific energy carriers (e.g., electricity for electric arc furnaces).  


==Transport submodel==
==Transport==
The transport submodule consists of two parts - passenger and freight transport. A detailed description of the passenger transport (TRAVEL) is provided by Girod et al. ([[Girod et al., 2012|2012]]). There are seven modes - foot, bicycle, bus, train, passenger vehicle, high-speed train, and aircraft. The structural change (SC) processes in the transport module are described by an explicit consideration of the modal split. Two main factors govern model behaviour, namely the near-constancy of the travel time budget (TTB), and the travel money budget (TMB) over a large range of incomes. These are used as constraints to describe transition processes among the seven main travel modes, on the basis of their relative costs and speed characteristics and the consumer preferences for comfort levels and specific transport modes.
The transport submodule consists of two parts - passenger and freight transport. A detailed description of the passenger transport (TRAVEL) is provided by Girod et al. ([[Girod et al., 2012|2012]]). There are seven modes - foot, bicycle, bus, train, passenger vehicle, high-speed train, and aircraft. The structural change (SC) processes in the transport module are described by an explicit consideration of the modal split. Two main factors govern model behaviour, namely the near-constancy of the travel time budget (TTB), and the travel money budget (TMB) over a large range of incomes. These are used as constraints to describe transition processes among the seven main travel modes, on the basis of their relative costs and speed characteristics and the consumer preferences for comfort levels and specific transport modes.
The freight transport submodule is a simpler structure. Service demand is projected with constant elasticity of the industry value added for each transport mode. In addition, demand sensitivity to transport prices is considered for each mode, depending on its share of energy costs in the total service costs.
The freight transport submodule is a simpler structure. Service demand is projected with constant elasticity of the industry value added for each transport mode. In addition, demand sensitivity to transport prices is considered for each mode, depending on its share of energy costs in the total service costs.
The efficiency changes in both passenger and freight transport represent the autonomous increase in energy efficiency, and the price-induced improvements in energy efficiency improvement parameters. These changes are described by substitution processes in explicit technologies, such as vehicles with different energy efficiencies, costs and fuel type characteristics compete on the basis of preferences and total passenger-kilometre costs, using a multinomial logit equation. The efficiency of the transport fleet is determined by a weighted average of the full fleet (a vintage model, giving an explicit description of the efficiency in all single years). As each type of vehicle is assumed to use only one fuel type, this process also describes the fuel selection.
The efficiency changes in both passenger and freight transport represent the autonomous increase in energy efficiency, and the price-induced improvements in energy efficiency improvement parameters. These changes are described by substitution processes in explicit technologies, such as vehicles with different energy efficiencies, costs and fuel type characteristics compete on the basis of preferences and total passenger-kilometre costs, using a multinomial logit equation. The efficiency of the transport fleet is determined by a weighted average of the full fleet (a vintage model, giving an explicit description of the efficiency in all single years). As each type of vehicle is assumed to use only one fuel type, this process also describes the fuel selection.


==Residential submodel==
==Residential energy use==
The residential submodule describes the energy demand from household energy functions of cooking appliances, space heating and cooling, water heating and lighting. These functions are described in detail elsewhere ([[Daioglou et al., 2012]]; [[Van Ruijven et al., 2011]]).  
The residential submodule describes the energy demand from household energy functions of cooking appliances, space heating and cooling, water heating and lighting. These functions are described in detail elsewhere ([[Daioglou et al., 2012]]; [[Van Ruijven et al., 2011]]).  
Structural change in energy demand is presented by modelling end-use household functions:  
Structural change in energy demand is presented by modelling end-use household functions:  
*Energy service demand for space heating is modelled using correlations with floor area, heating degree days and energy intensity, the last including building efficiency improvements.  
*Energy service demand for space heating is modelled using correlations with floor area, heating degree days and energy intensity, the last including building efficiency improvements.  
Line 59: Line 62:
*Energy use related to appliances is based on ownership, household income, efficiency reference values, and autonomous and price-induced improvements. Space cooling follows a similar approach, but also includes cooling degree days (Isaac and Van Vuuren, 2009).  
*Energy use related to appliances is based on ownership, household income, efficiency reference values, and autonomous and price-induced improvements. Space cooling follows a similar approach, but also includes cooling degree days (Isaac and Van Vuuren, 2009).  
*Electricity use for lighting is determined on the basis of floor area, wattage and lighting hours based on geographic location.  
*Electricity use for lighting is determined on the basis of floor area, wattage and lighting hours based on geographic location.  
Efficiency improvements are included in different ways. Exogenously driven energy efficiency improvement over time are used for appliances, light bulbs, air conditioning, building insulation and heating equipment, Price-induced energy efficiency improvements (PIEEI) occur by explicitly describing the investments in appliances with a similar performance level but with different energy and investment costs. For example, competition between incandescent light bulbs and more energy-efficient lighting is determined by changes in energy prices.
Efficiency improvements are included in different ways. Exogenously driven energy efficiency improvement over time are used for appliances, light bulbs, air conditioning, building insulation and heating equipment, Price-induced energy efficiency improvements (PIEEI) occur by explicitly describing the investments in appliances with a similar performance level but with different energy and investment costs. For example, competition between incandescent light bulbs and more energy-efficient lighting is determined by changes in energy prices.



Revision as of 15:24, 22 May 2014

TIMER model, energy demand module
Some sectors are represented in a generic way as shown here, the sectors transport, residential and heavy industry are modelled in specific modules.

Model description of Energy demand