Browse data: Reference

Jump to navigation Jump to search
Reference > Period: 2016 up to today

Click on one or more items below to narrow your results.

Author:
Period: (Click arrow to add another value)

Showing below up to 76 results in range #1 to #76.

View (previous 750 | next 750) (20 | 50 | 100 | 250 | 500)

  1. Admiraal et al., 2016 (A. K. Admiraal, A. F. Hof, M. G. J. den Elzen, D. P. van Vuuren (2016). Costs and benefits of differences in the timing of greenhouse gas emission reductions. Mitigation and Adaptation Strategies for Global Change, 21(8), pp. 1165-1179, doi: http://dx.doi.org/10.1007/s11027-015-9641-4.
    Link to PBL-website: http://www.pbl.nl/en/publications/costs-and-benefits-of-differences-in-the-timing-of-greenhouse-gas-emission-reductions.
    )
  2. Aguiar et al., 2016 (Angel Aguiar, Badri Narayanan, Robert McDougall (2016). An Overview of the GTAP 9 Data Base. Journal of Global Economic Analysis, 1(1), doi: http://dx.doi.org/https://doi.org/10.21642/JGEA.010103AF.)
  3. Beusen et al., 2016 (A. H. W. Beusen, A. F. Bouwman, L. P. H. Van Beek, J. M. Mogollón, J. J. Middelburg (2016). Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences, 13(8), pp. 2441-2451, doi: http://dx.doi.org/10.5194/bg-13-2441-2016.)
  4. Bijl et al., 2016 (D. L. Bijl, P. W. Bogaart, T. Kram, B. J. M. de Vries, D. P. van Vuuren (2016). Long-term water demand for electricity, industry and households. Environmental Science and Policy, 55, pp. 75-86, doi: http://dx.doi.org/10.1016/j.envsci.2015.09.005.)
  5. Bijl et al., 2017 (D.L. Bijl, P.W. Bogaart, S.C. Dekker, E. Stehfest, B.J.M. de Vries, D.P. van Vuuren (2017). A physically-based model of long-term food demand. Global Environmental Change, 45, pp. 47-62, doi: http://dx.doi.org/10.1016/j.gloenvcha.2017.04.003.)
  6. Bijl et al., 2018a (D.L. Bijl, H. Biemans, P.W. Bogaart, S.C. Dekker, J.C. Doelman, E. Stehfest, D.P. van Vuuren (2018). A Global Analysis of Future Water Deficit Based On Different Allocation Mechanisms. Water Resources Research, 54(8), pp. 5803-5824, doi: http://dx.doi.org/10.1029/2017WR021688.)
  7. Braakhekke et al., 2019 (Braakhekke, M. C., Doelman, J. C., Baas, P., Müller, C., Schaphoff, S., Stehfest, E., van Vuuren, D. P. (2019). Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model. Earth System Dynamics, 10(4), pp. 617-630, doi: http://dx.doi.org/https://doi.org/10.5194/esd-10-617-2019.
    Link to PBL-website: https://www.pbl.nl/en/publications/modeling-forest-plantations-for-carbon-uptake-with-the-lpjml-dynamic-global-vegetation-model.
    )
  8. Braspenning Radu et al., 2016 (O. Braspenning Radu, M. van den Berg, Z. Klimont, S. Deetman, G. Janssens-Maenhout, M. Muntean, C. Heyes, F. Dentener, D. P. van Vuuren (2016). Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios. Atmospheric Environment, 140, pp. 577-591, doi: http://dx.doi.org/10.1016/j.atmosenv.2016.05.021.
    Link to PBL-website: http://www.pbl.nl/en/publications/exploring-synergies-between-climate-and-air-quality-policies-using-long-term-global-and-regional-emission-scenarios.
    )
  9. Cengic et al., 2020 (Mirza Čengić, Jasmijn Rost, Daniela Remenska, Jan H. Janse, Mark A. J. Huijbregts, and Aafke M. Schipper (2020). On the importance of predictor choice, modelling technique, and number of pseudo‐absences for bioclimatic envelope model performance. Ecology and Evolution, 10(21), pp. 12307–12317, doi: http://dx.doi.org/10.1002/ece3.6859.)
  10. DEA, 2018 (Danish Energy Agency (2018). Note on technology costs for offshore wind farms and the background for updating CAPEX and OPEX in the technology catalogue datasheets, Danish Ministry of Energy, Utilities and Climate(URL: https://ens.dk/sites/ens.dk/files/Analyser/havvindsnotat_translation_eng_final.pdf).)
  11. Dagnachew et al., 2018 (A.G. Dagnachew, P.L. Lucas, A.F. Hof, D.P. van Vuuren (2018). Trade-offs and synergies between universal electricity access and climate change mitigation in Sub-Saharan Africa. Energy Policy, 114, pp. 355-366, doi: http://dx.doi.org/10.1016/j.enpol.2017.12.023.)
  12. Dagnachew et al., 2020 (Anteneh G.Dagnachew, Andries F.Hof, Paul L.Lucas, Detlef P.van Vuuren (2020). Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits. Energy, 192, doi: http://dx.doi.org/https://doi.org/10.1016/j.energy.2019.116641.)
  13. Daioglou et al., 2019 (V. Daioglou, J.C. Doelman, B. Wicke, A. Faaij, D.P. van Vuuren (2019). Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Global Environmental Change, 54, pp. 88-101, doi: http://dx.doi.org/10.1016/j.gloenvcha.2018.11.012.)
  14. Daioglou et al., 2022 (Vassilis Daioglou, Efstratios Mikropoulos, David Gernaat, Detlef P.van Vuuren (2022). Efficiency improvement and technology choice for energy and emission reductions of the residential sector. Energy, 243, doi: http://dx.doi.org/https://doi.org/10.1016/j.energy.2021.122994.)
  15. De Boer and Van Vuuren, 2017 (H.S. de Boer and D.P. van Vuuren (2017). Representation of variable renewable energy source in TIMER, an aggregated energy system simulation model. Energy Economics, 64, pp. 600-611, doi: http://dx.doi.org/http://doi.org/10.1016/j.eneco.2016.12.006.
    Link to PBL-website: http://www.pbl.nl/en/publications/representation-of-variable-renewable-energy-sources-in-timer-an-aggregated-energy-system-simulation-model.
    )
  16. De Vos et al., 2021 (Lotte de Vos, Hester Biemans, Jonathan C Doelman, Elke Stehfest and Detlef P van Vuuren (2021). Trade-offs between water needs for food, utilities, and the environment—a nexus quantification at different scales. Environmental Research Letters, 16(11), doi: http://dx.doi.org/https://doi.org/10.1088/1748-9326/ac2b5e.)
  17. Dellink et al., 2017 (R. Dellink, J. Chateau, E. Lanzi, B. Magné (2017). Long-term economic growth projections in the Shared Socioeconomic Pathways.. Global Environmental Change, 42, pp. 200-214, doi: http://dx.doi.org/10.1016/j.gloenvcha.2015.06.004.)
  18. Den Elzen et al., 2016 (M. den Elzen, A. Admiraal, M. Roelfsema, H. van Soest, A. F. Hof, N. Forsell (2016). Contribution of the G20 economies to the global impact of the Paris agreement climate proposals. Climatic Change, 137(3-4), pp. 655-665, doi: http://dx.doi.org/10.1007/s10584-016-1700-7.
    Link to PBL-website: http://www.pbl.nl/en/publications/contribution-of-the-g20-economies-to-the-global-impact-of-the-paris-agreement-climate-proposals.
    )
  19. Doelman et al., 2018 (J.C. Doelman, E. Stehfest, A. Tabeau, H. van Meijl, L. Lassaletta, K. Neumann-Hermans, D.E.H.J. Gernaat, M. Harmsen, V. Daioglou, H. Biemans, S. van der Sluis, D.P. van Vuuren (2018). Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 48(January), pp. 119-135, doi: http://dx.doi.org/10.1016/j.gloenvcha.2017.11.014.
    Link to PBL-website: http://www.pbl.nl/en/publications/exploring-ssp-land-use-dynamics-using-the-image-model-regional-and-gridded-scenarios-of-land-use-change-and-land-ba.
    )
  20. Doelman et al., 2019 (Doelman, Jonathan C, Stehfest, Elke, van Vuuren, Detlef P, Tabeau, Andrzej, Hof, Andries F, Braakhekke, Maarten C, Gernaat, David EHJ, van den Berg, Maarten, van Zeist, Willem‐Jan, Daioglou, Vassilis (2019). Afforestation for climate change mitigation: Potentials, risks and trade-offs. Global Change Biology, 26(3), pp. 1576-1591, doi: http://dx.doi.org/https://doi.org/10.1111/gcb.14887.
    Link to PBL-website: https://www.pbl.nl/publications/afforestation-for-climate-change-mitigation-potentials-risks-and-trade-offs.
    )
  21. Doelman et al., 2020b (Jonathan C. Doelman, Elke Stehfest, Andrzej Tabeau, Hans van Meijl, Luis Lassaletta, David E.H.J. Gernaat, Kathleen Hermans, Mathijs Harmsen, Vassilis Daioglou, Hester Biemans, Sietske van der Sluis, Detlef P.van Vuuren (2020). Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 48, pp. 119-135, doi: http://dx.doi.org/https://doi.org/10.1016/j.gloenvcha.2017.11.014.)
  22. EC-JRC/PBL, 2016 (EC-JRC/PBL (2016). European Commission, Joint Research Centre (EC-JRC)/Netherlands Environmental Assessment Agency (PBL). Emissions Database for Global Atmospheric Research (EDGAR), release EDGAR v4.3.2 (1970 - 2012) of March 2016, http://edgar.jrc.ec.europa.eu.)
  23. ESA, 2017 (European Space Agency (2017). Climate Change Initiative (ESA-CCI) V2.0.7.European Space Agency.URL: https://maps.elie.ucl.ac.be/CCI/viewer/download.php)
  24. Edelenbosch et al., 2017b (O. Y. Edelenbosch, D. L. McCollum, D. P. van Vuuren, C. Bertram, S. Carrara, H. Daly, S. Fujimori, A. Kitous, P. Kyle, E. Ó Broin, P. Karkatsoulis, F. Sano (2016). Decomposing passenger transport futures: Comparing results of global integrated assessment models. Transportation Research Part D: Transport and Environment, doi: http://dx.doi.org/10.1016/j.trd.2016.07.003.)
  25. FAO, 2015 (FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (2016). Global Forest Resources Assessment 2015, FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, Rome(URL: https://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/).)
  26. FAO, 2020 (Food and Agriculture Organization of the United Nations (2020). Global Forest Resources Assessment 2020 (FRA 2020), Food and Agriculture Organization of the United Nations, Food and Agriculture Organization of the United Nations, Rome(URL: https://doi.org/10.4060/ca9825en).)
  27. Frank et al., 2019 (S. Frank, P. Havlík, E. Stehfest, H. van Meijl, P. Witzke, I. Pérez-Domínguez, M. van Dijk, J.C. Doelman, T. Fellmann, J.F.L. Koopman, A. Tabeau, H. Valin (2019). Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change, 9(1), pp. 66-72, doi: http://dx.doi.org/10.1038/s41558-018-0358-8.)
  28. Friedlingstein et al., 2019 (Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle (2019). Global Carbon Budget 2019. Earth System Science Data, 11, pp. 1783–1838, doi: http://dx.doi.org/https://doi.org/10.5194/essd-11-1783-2019.)
  29. Gernaat et al., 2017 (D.E.H.J. Gernaat, P.W. Bogaart, D.P.V. Vuuren, H. Biemans, R. Niessink (2017). High-resolution assessment of global technical and economic hydropower potential. Nature Energy, 2(10), pp. 821-828, doi: http://dx.doi.org/10.1038/s41560-017-0006-y.)
  30. Gernaat et al., 2021 (David E. H. J. Gernaat, Harmen Sytze de Boer, Vassilis Daioglou, Seleshi G. Yalew, Christoph Müller, Detlef P. van Vuuren (2021). Climate change impacts on renewable energy supply. Nature Climate Change, 11, pp. 119-125, doi: http://dx.doi.org/https://doi.org/10.1038/s41558-020-00949-9.)
  31. Goldewijk et al., 2017 (K.K. Goldewijk, A. Beusen, J. Doelman, E. Stehfest (2017). Anthropogenic land use estimates for the Holocene - HYDE 3.2. Earth System Science Data, 9(2), pp. 927-953, doi: http://dx.doi.org/10.5194/essd-9-927-2017.)
  32. Harmsen et al., 2016 (M. J. H. M. Harmsen, M. van den Berg, V. Krey, G. Luderer, A. Marcucci, J. Strefler, D. P. V. Vuuren (2016). How climate metrics affect global mitigation strategies and costs: a multi-model study. Climatic Change, 136(2), pp. 203-216, doi: http://dx.doi.org/10.1007/s10584-016-1603-7.)
  33. Harmsen et al., 2019a (Mathijs Harmsen, Detlef P. van Vuuren, Benjamin Leon Bodirsky, Jean Chateau, Olivier Durand-Lasserve, Laurent Drouet, Oliver Fricko, Shinichiro Fujimori, David E.H.J. Gernaat, Tatsuya Hanaoka, Jérôme Hilaire, Kimon Keramidas, Gunnar Luderer, Maria Cecilia P. Moura, Fuminori Sano, Steven J. Smith, Kenichi Wada (2019). The role of methane in future climate strategies: Mitigation potentials and climate impacts. Climatic Change (in press).)
  34. Harmsen et al., 2019b (Mathijs Harmsen, Oliver Fricko, Jérôme Hilaire, Detlef P. van Vuuren, Laurent Drouet, Olivier Durand-Lasserve, Shinichiro Fujimori, Kimon Keramidas, Zbigniew Klimont, Gunnar Luderer, Lara Aleluia Reis, Keywan Riahi, Fuminori Sano, Steven J. Smith (2019). Taking some heat off the NDCs? The limited potential of additional short-lived climate forcers’ mitigation. Climatic Change (under review).)
  35. Harmsen et al., 2019c (Mathijs J.H.M. Harmsen, Detlef P. van Vuuren, Dali R. Nayak, Andries F. Hof, Lena Höglund-Isaksson, Paul L. Lucas, Jens B. Nielsen, Pete Smith, Elke Stehfest (2019). Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environmental Science and Policy (under review).)
  36. Hoesly et al., 2018 (Rachel M. Hoesly, Steven J. Smith, Leyang Feng, Zbigniew Klimont, Greet Janssens-Maenhout, Tyler Pitkanen, Jonathan J. Seibert, Linh Vu, Robert J. Andres, Ryan M. Bolt, Tami C. Bond, Laura Dawidowski, Nazar Kholod, June-ichi Kurokawa, Meng Li, Liang Liu, Zifeng Lu, Maria Cecilia P. Moura, Patrick R. Rourke, Qiang Zhang (2018). Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11(1), pp. 369-408, doi: http://dx.doi.org/10.5194/gmd-11-369-2018.)
  37. Hof et al., 2016 (A. F. Hof, M. G. J. den Elzen, A. Mendoza Beltran (2016). The EU 40% greenhouse gas emission reduction target by 2030 in perspective. International Environmental Agreements: Politics, Law and Economics, 16(3), pp. 375-392, doi: http://dx.doi.org/10.1007/s10784-016-9317-x.
    Link to PBL-website: https://www.pbl.nl/en/publications/the-eu-40-procent-greenhouse-gas-emission-reduction-target-by-2030-in-perspective.
    )
  38. Hof et al., 2017 (A.F. Hof, M.G.J. den Elzen, A. Admiraal, M. Roelfsema, D.E.H.J. Gernaat, D.P. van Vuuren (2017). Global and regional abatement costs of Nationally Determined Contributions (NDCs) and of enhanced action to levels well below 2 °C and 1.5 °C. Environmental Science and Policy, 71, pp. 30-40, doi: http://dx.doi.org/10.1016/j.envsci.2017.02.008.)
  39. Hurtt et al., 2020 (George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang (2020). Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 12, pp. 5425–5464, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-13-5425-2020.)
  40. IEA, 2019 (International Energy Agency (2019). The Future of Hydrogen(URL: https://www.iea.org/reports/the-future-of-hydrogen).)
  41. IEA, 2021 (IEA (2021). World Energy Outlook 2021, International Energy Agency(URL: https://www.iea.org/reports/world-energy-outlook-2021).)
  42. IPCC, 2019 (P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.) (2019). Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, IPCC(URL: https://www.ipcc.ch/site/assets/uploads/sites/4/2019/12/02_Summary-for-Policymakers_SPM.pdf).)
  43. IRENA, 2016 (IRENA (2016). REsource.International Renewable Energy Agency.URL: http://resourceirena.irena.org/)
  44. IRENA, 2020 (IRENA (2020). Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5oC climate goal, International Renewable Energy Agency(URL: https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction).)
  45. IRENA, 2022 (IRENA (2022). Statistics Time Series.International Renewable Energy Agency.URL: https://www.irena.org/Data/View-data-by-topic/Capacity-and-Generation/Statistics-Time-Series)
  46. Jewell et al., 2016 (Jessica Jewell, Vadim Vinichenko, David McCollum, Nico Bauer, Keywan Riahi, Tino Aboumahboub, Oliver Fricko, Mathijs Harmsen, Tom Kober, Volker Krey, Giacomo Marangoni, Massimo Tavoni, Detlef P. van Vuuren, Bob van der Zwaan & Aleh Cherp (2016). Comparison and interactions between the long-term pursuit of energy independence and climate policies. Nature Energy, 1, doi: http://dx.doi.org/10.1038/nenergy.2016.73.)
  47. Kuramochi et al., 2016 (Kuramochi, T., Höhne, N., Sterl, S., Gonzales-Zuñiga, S., Hans, F., Hagemann, M., Hernandez Legaria, E., den Elzen, M.G.J., Roelfsema, M., van Soest, H., Forsell, N., Turkovska, O. (2016). Greenhouse gas mitigation scenarios for major emitting countries: Analysis of current and planned climate policies, and mitigation pledges. Link to PBL-website: http://www.pbl.nl/en/publications/greenhouse-gas-mitigation-scenarios-for-major-emitting-countries.)
  48. Leclère et al., 2020 (David Leclère, Michael Obersteiner, Mike Barrett, Stuart H. M. Butchart, Abhishek Chaudhary, Adriana De Palma, Fabrice A. J. DeClerck, Moreno Di Marco, Jonathan C. Doelman, Martina Dürauer, Robin Freeman, Michael Harfoot, Tomoko Hasegawa, Stefanie Hellweg, Jelle P. Hilbers, Samantha L. L. Hill, Florian Humpenöder, Nancy Jennings, Tamás Krisztin, Georgina M. Mace, Haruka Ohashi, Alexander Popp, Andy Purvis, Aafke M. Schipper, Andrzej Tabeau, Hugo Valin, Hans van Meijl, Willem-Jan van Zeist, Piero Visconti, Rob Alkemade, Rosamunde Almond, Gill Bunting, Neil D. Burgess, Sarah E. Cornell, Fulvio Di Fulvio, Simon Ferrier, Steffen Fritz, Shinichiro Fujimori, Monique Grooten, Thomas Harwood, Petr Havlík, Mario Herrero, Andrew J. Hoskins, Martin Jung, Tom Kram, Hermann Lotze-Campen, Tetsuya Matsui, Carsten Meyer, Deon Nel, Tim Newbold, Guido Schmidt-Traub, Elke Stehfest, Bernardo B. N. Strassburg, Detlef P. van Vuuren, Chris Ware, James E. M. Watson, Wenchao Wu, Lucy Young (2020). Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 585, pp. 551–556, doi: http://dx.doi.org/https://doi.org/10.1038/s41586-020-2705-y.)
  49. Luderer et al., 2017 (G. Luderer, R.C. Pietzcker, S. Carrara, H.S. de Boer, S. Fujimori, N. Johnson, S. Mima, D. Arent (2017). Assessment of wind and solar power in global low-carbon energy scenarios: An introduction. Energy Economics, 64(May 2017), pp. 542-551, doi: http://dx.doi.org/10.1016/j.eneco.2017.03.027.
    Link to PBL-website: http://www.pbl.nl/en/publications/assessment-of-wind-and-solar-power-in-global-low-carbon-energy-scenarios-an-introduction.
    )
  50. Musters et al., submitted (C.J.M. Musters, R.J.T. Verweij, M. Bakkenes, D.P. Faith, S. Ferrier, R. Alkemade (in preparation). Present and future species survival: a new method for local, regional, and global estimations. in preparation; available on request.)
  51. Müller et al., 2016a (C. Müller, E. Stehfest, J. G. Van Minnen, B. Strengers, W. Von Bloh, A. H. W. Beusen, S. Schaphoff, T. Kram, W. Lucht (2016). Drivers and patterns of land biosphere carbon balance reversal. Environmental Research Letters, 11(4), doi: http://dx.doi.org/10.1088/1748-9326/11/4/044002.)
  52. Müller et al., 2016b (Ch. Müller, E. Stehfest, J.G. van Minnen, B. Strengers, W. von Bloh, A. Beusen, S. Schaphoff, T. Kram, W. Lucht (2016). Reversal of the land biosphere carbon balance under climate and land-use change. Environmental Research Letters, 11(4), doi: http://dx.doi.org/http://dx.doi.org/10.1088/1748-9326/11/4/044002.
    Link to PBL-website: http://www.pbl.nl/en/publications/drivers-and-patterns-of-land-biosphere-carbon-balance-reversal.
    )
  53. Palma et al., 2021 (Adriana Palma, Katia Sanchez-Ortiz, Helen R.P Phillips, Andy Purvis (2021). Calculating the Biodiversity Intactness Index: the PREDICTS implementation.URL: https://doi.org/10.5281/ZENODO.5642946)
  54. Pietzcker et al., 2017 (R. Pietzcker, F. Ueckerdt, S. Carrara, H.S. de Boer, J. Despres, S. Fujimori, N. Johnson, A. Kitous, Y. Scholz, P. Sullivan, G. Luderer (2017). System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches. Energy Economics, 64(May 2017), pp. 583-599, doi: http://dx.doi.org/10.1016/j.eneco.2016.11.018.)
  55. Rao et al., 2016 (S. Rao, Z. Klimont, J. Leitao, K. Riahi, R. Van Dingenen, L. A. Reis, K. Calvin, F. Dentener, L. Drouet, S. Fujimori, M. Harmsen, G. Luderer, C. Heyes, J. Strefler, M. Tavoni, D. P. Van Vuuren (2016). A multi-model assessment of the co-benefits of climate mitigation for global air quality. Environmental Research Letters, 11(12), doi: http://dx.doi.org/10.1088/1748-9326/11/12/124013.)
  56. Rao et al., 2017 (S. Rao, Z. Klimont, K. Riahi, M. Amann, O. Fricko, P. Havlik, C. Heyes (2017). Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change, 42, pp. 346-358, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.05.012.)
  57. Rogelj et al., 2016 (Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534, pp. 631-639, doi: http://dx.doi.org/10.1038/nature18307.)
  58. Rolinski et al., 2018 (Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Bodirsky, B. L., Bondeau, A., Boons-Prins, E. R., Bouwman, A. F., Leffelaar, P. A., te Roller, J. A., Schaphoff, S., Thonicke, K. (2018). Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6. Geoscientific Model Development, 11(1), pp. 429-451, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-429-2018.)
  59. S&P, 2017 (S&P Global Market Intelligence (2017). World Electric Power Plants Database, March 2017.Harvard Dataverse.URL: https://doi.org/10.7910/DVN/OKEZ8A)
  60. Schaphoff et al., 2018a (Sibyll Schaphoff, Werner von Bloh, Anja Rammig, Kirsten Thonicke, Hester Biemans, Matthias Forkel, Dieter Gerten, Jens Heinke, Jonas Jägermeyr, Jürgen Knauer, Fanny Langerwisch, Wolfgang Lucht, Christoph Müller, Susanne Rolinski, and Katharina Waha (2018). LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description. Geoscientific Model Development, 11, pp. 1343–1375, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-1343-2018.)
  61. Schaphoff et al., 2018b (Sibyll Schaphoff, Matthias Forkel, Christoph Müller, Jürgen Knauer, Werner von Bloh, Dieter Gerten, Jonas Jägermeyr, Wolfgang Lucht, Anja Rammig, Kirsten Thonicke, and Katharina Waha (2018). LPJmL4 – a dynamic global vegetation model with managed land – Part 2: Model evaluation. Geoscientific Model Development, 11, pp. 1377–1403, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-1377-2018.)
  62. Schipper et al., 2020 (Schipper A.M., Hilbers J.P., Meijer J.R., Antão L.H., Benítez-López A., de Jonge M.M.J., Leemans L.H., Scheper E., Alkemade R., Doelman J.C., Mylius S., Stehfest E., van Vuuren D.P., van Zeist W.-J. (2020). Projecting terrestrial biodiversity intactness with GLOBIO 4. Global Change Biology, 26(2), pp. 760-771, doi: http://dx.doi.org/10.1111/gcb.14848.)
  63. Stehfest et al., 2019 (Elke Stehfest, Willem-Jan van Zeist, Hugo Valin, Petr Havlik, Alexander Popp, Page Kyle, Andrzej Tabeau, Daniel Mason-D’Croz, Tomoko Hasegawa, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Shinichiro Fujimori, Florian Humpenöder, Hermann Lotze-Campen, Hans van Meijl and Keith Wiebe (2019). Key determinants of global land-use projections. Nature Communications, 10, doi: http://dx.doi.org/https://doi.org/10.1038/s41467-019-09945-w.)
  64. Stoorvogel et al., 2017 (J. J. Stoorvogel, M. Bakkenes, A.J.A.M. Temme, N.H. Batjes, B.J.E. ten Brink (2017). S-World: A Global Soil Map for Environmental Modelling. Land Degradation and Development, 28(1), pp. 22-33, doi: http://dx.doi.org/10.1002/ldr.2656.)
  65. UNEP (2016) (UNEP, PBL contribution M.G.J. den Elzen, J.G.J Olivier, M.R. Roelfsema (2016). The Emissions Gap Report 2016. United Nations Environment, UNEP, UNEP, Nairobi. Link to PBL-website: http://www.pbl.nl/en/publications/unep-emissions-gap-report-2016.)
  66. Ueckerdt et al., 2016 (F. Ueckerdt, R. Pietzcker, Y. Scholz, D. Stetter, A. Giannousakis, G. Luderer (2016). Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model. Energy Economics, doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.eneco.2016.05.012.)
  67. Van Meijl et al., 2018 (H. Van Meijl, P. Havlik, H. Lotze-Campen, E. Stehfest, P. Witzke, I.P. Domínguez, B.L. Bodirsky, M. Van Dijk, J. Doelman, T. Fellmann, F. Humpenöder, J.F.L. Koopman, C. Müller, A. Popp, A. Tabeau, H. Valin, W.-J. Van Zeist (2018). Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 13(6), doi: http://dx.doi.org/10.1088/1748-9326/aabdc4.)
  68. Van Ruijven et al., 2016 (B. J. Van Ruijven, D. P. Van Vuuren, W. Boskaljon, M. L. Neelis, D. Saygin, M. K. Patel (2016). Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resources, Conservation and Recycling, 112, pp. 15-36, doi: http://dx.doi.org/10.1016/j.resconrec.2016.04.016.)
  69. Van Sluisveld et al., 2021 (Mariësse A.E. van Sluisveld, Harmen Sytze de Boer, Vassilis Daioglou, Andries F.Hof, Detlef P.van Vuuren (2021). A race to zero - Assessing the position of heavy industry in a global net-zero CO2 emissions context. Energy and Climate Change, 2, doi: http://dx.doi.org/https://doi.org/10.1016/j.egycc.2021.100051.)
  70. Van Vuuren et al., 2017b (D. P. van Vuuren, E. Stehfest, D. E. H. J. Gernaat, J. C. Doelman, M. van den Berg, M. Harmsen, H. S. de Boer, L. F. Bouwman, V. Daioglou, O. Y. Edelenbosch, B. Girod, T. Kram, L. Lassaletta, P. L. Lucas, H. van Meijl, C. Müller, B. J. van Ruijven, S. van der Sluis, A. Tabeau (2017). Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 42, pp. 237-250, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.05.008.)
  71. Van Vuuren et al., 2018 (D.P. Van Vuuren, E. Stehfest, D.E.H.J. Gernaat, M. Van Den Berg, D.L. Bijl, H.S. De Boer, V. Daioglou, J.C. Doelman, O.Y. Edelenbosch, M. Harmsen, A.F. Hof, M.A.E. Van Sluisveld (2018). Alternative pathways to the 1.5 °c target reduce the need for negative emission technologies. Nature Climate Change, 8(5), pp. 391-397, doi: http://dx.doi.org/10.1038/s41558-018-0119-8.)
  72. Van Vuuren et al., 2021 (Detlef van Vuuren, Elke Stehfest , David Gernaat, Harmen-Sytze de Boer , Vassilis Daioglou , Jonathan Doelman , Oreane Edelenbosch , Mathijs Harmsen , Willem-Jan van Zeist , Maarten van den Berg , Ioannis Dafnomilis , Mariesse van Sluisveld , Andrzej Tabeau , Lotte De Vos , Liesbeth de Waal, Nicole van den Berg , Arthur Beusen , Astrid Bos , Hester Biemans , Lex Bouwman , Hsing-Hsuan Chen, Sebastiaan Deetman , Anteneh Dagnachew , Andries Hof , Hans van Meijl , Johan Meyer, Stratos Mikropoulos, Mark Roelfsema , Aafke Schipper , Heleen Van Soest , Isabela Tagomori , Victhalia Zapata Castillo (2021). The 2021 SSP scenarios of the IMAGE 3.2 model, doi: http://dx.doi.org/https://doi.org/10.31223/X5CG92.)
  73. Van den Berg et al., 2020 (Van den Berg et al. (2020). Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Climatic Change, 162, pp. 1805-1822, doi: http://dx.doi.org/https://link.springer.com/article/10.1007/s10584-019-02368-y.
    Link to PBL-website: https://www.pbl.nl/en/publications/implications-of-various-effort-sharing-approaches-for-national-carbon-budgets-and-emission-pathways.
    )
  74. Van der Esch et al., 2017 (Stefan van der Esch, Ben ten Brink, Elke Stehfest, Michel Bakkenes, Annelies Sewell, Arno Bouwman, Johan Meijer, Henk Westhoek, Maurits van den Berg (2017). Exploring future changes in land use and land condition and the impacts on food, water, climate change and biodiversity: Scenarios for the UNCCD Global Land Outlook, PBL, PBL, Den Haag. Link to PBL-website: https://www.pbl.nl/en/publications/exploring-future-changes-in-land-use.)
  75. Von Bloh et al., 2018 (Werner von Bloh, Sibyll Schaphoff, Christoph Müller, Susanne Rolinski, Katharina Waha, and Sönke Zaehle (2018). Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geoscientific Model Development, 11, pp. 2789–2812, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-2789-2018.)
  76. Westhoek et al., in preparation (H. Westhoek, E. Stehfest, M. Berg van den, G Woltjer (in preparation). Effects on global agricultural greenhouse gas emissions from changes in EU diets and husbandry systems. Animals - in preparation; available on request.)

View (previous 750 | next 750) (20 | 50 | 100 | 250 | 500)