Emissions/Description: Difference between revisions

From IMAGE
Jump to navigation Jump to search
No edit summary
No edit summary
Line 55: Line 55:


# Cement and steel production. IMAGE-TIMER includes detailed demand models for these commodities (Component [[Energy supply and demand]]). Similar to those from energy use, emissions are calculated by multiplying the activity levels to exogenously set emission factors.
# Cement and steel production. IMAGE-TIMER includes detailed demand models for these commodities (Component [[Energy supply and demand]]). Similar to those from energy use, emissions are calculated by multiplying the activity levels to exogenously set emission factors.
# Other industrial activities. Activity levels are formulated as a regional function of industry value added, and include copper production and production of solvents. Emissions are also calculated by multiplying the activity levels by the emission factors.
# For halogenated gases, the approach used was developed by Harnisch et al. ([[Harnisch et al., 2009|2009]]), which derived relationships with income for the main uses of halogenated gases (HFCs, PFCs, SF6). In the actual use of the model, slightly updated parameters are used to better represent the projections as presented by Velders et al. ([[Velders et al., 2009|2009]]). The marginal abatement cost curve per gas still follows the methodology described by Harnisch et al. ([[Harnisch et al., 2009|2009]]).


# Other industrial activities. Activity levels are formulated as a regional function of industry value added, and include copper production and production of solvents. Emissions are also calculated by multiplying the activity levels by the emission factors.
===Land-use related emissions===
CO2 exchanges between terrestrial ecosystems and the atmosphere computed by the LPJ model are described in [[Carbon cycle and natural vegetation]]. The land-use emissions model focuses on emissions of other compounds, including greenhouse gases (CH4, N2O), ozone precursors (NOx, CO, NMVOC), acidifying compounds (SO2, NH3) and aerosols (SO2, NO3, BC, OC).
 
For many sources, the emission factor ([[#General approaches|Equation 1]]) is used ([[Emission table]]). Most emission factors for anthropogenic sources are from the [[EDGAR database]], with time-dependent values for historical years. In the scenario period, most emission factors are constant, except for explicit climate abatement policies (see below).  


# For halogenated gases, the approach used was developed by Harnisch et al. ([[Harnisch et al., 2009|2009]]), which derived relationships with income for the main uses of halogenated gases (HFCs, PFCs, SF6). In the actual use of the model, slightly updated parameters are used to better represent the projections as presented by Velders et al. ([[Velders et al., 2009|2009]]). The marginal abatement cost curve per gas still follows the methodology described by Harnisch et al. ([[Harnisch et al., 2009|2009]]).
There are some other exceptions: Various land-use related gaseous nitrogen emissions are modelled in grid-specific models (see further), and in several other cases, emission factors depend on the assumptions described in other parts of IMAGE. For example, enteric fermentation CH4 emissions from non-dairy and dairy cattle are calculated on the basis of energy requirement and feed type (see Component [[Livestock systems]]). High-quality feed, such as concentrates from feed crops, have a lower CH4 emission factor than feed with a lower protein level and a higher content of components of lower digestibility. This implies that when feed conversion ratios change, the level of CH4 emissions will automatically change. Pigs, and sheep and goats have IPCC 2006 emission factors, which depend on the level of development of the countries. In IMAGE, agricultural productivity is used as a proxy for the development. For sheep and goats, the level of development is taken from EDGAR.


Land-use related emissions
CO2 exchanges between terrestrial ecosystems and the atmosphere computed by the LPJ model are described in Section 6.1. The land-use emissions model focuses on emissions of other compounds, including greenhouse gases (CH4, N2O), ozone precursors (NOx, CO, NMVOC), acidifying compounds (SO2, NH3) and aerosols (SO2, NO3, BC, OC).
For many sources, the emission factor (Equation 5.2.1) is used (Table 5.2.2). Most emission factors for anthropogenic sources are from the EDGAR database, with time-dependent values for historical years. In the scenario period, most emission factors are constant, except for explicit climate abatement policies (see below).
There are some other exceptions: Various land-use related gaseous nitrogen emissions are modelled in grid-specific models (see further), and in several other cases, emission factors depend on the assumptions described in other parts of IMAGE. For example, enteric fermentation CH4 emissions from non-dairy and dairy cattle are calculated on the basis of energy requirement and feed type (see Section 4.2.4). High-quality feed, such as concentrates from feed crops, have a lower CH4 emission factor than feed with a lower protein level and a higher content of components of lower digestibility. This implies that when feed conversion ratios change, the level of CH4 emissions will automatically change. Pigs, and sheep and goats have IPCC 2006 emission factors, which depend on the level of development of the countries. In IMAGE, agricultural productivity is used as a proxy for the development. For sheep and goats, the level of development is taken from EDGAR.
Constant emission factors may lead to decreasing emissions per unit of product, for example, when the emission factor is specified on a per-head basis. An increasing production per head may lead to a decrease in emissions per unit of product. For example, the CH4 emission level for animal waste is a constant per animal, which leads to a decrease in emissions per unit of meat or milk when production per animal increases.
Constant emission factors may lead to decreasing emissions per unit of product, for example, when the emission factor is specified on a per-head basis. An increasing production per head may lead to a decrease in emissions per unit of product. For example, the CH4 emission level for animal waste is a constant per animal, which leads to a decrease in emissions per unit of meat or milk when production per animal increases.
A special case is N2O emissions after forest clearing. After deforestation, litter remaining on the soil surface as well as root material and soil organic matter decompose in the first years after clearing, which may lead to pulses of N2O emissions. To mimic this effect, emissions in the first year after clearing are assumed to be five times the flux in the original ecosystem. Emissions decrease linearly to the level of the new ecosystem in the tenth year, usually below the flux in the original forest. For more details, see Kreileman and Bouwman (1994).
 
Land-use related emissions of NH3, N2O and NO are calculated withgrid-specific models.N2O from soils under natural vegetation is calculated with the model developed by Bouwman et al. (1993). This regression model is based on temperature, a proxy for soil carbon input, soil water and oxygen status, and for net primary production. Ammonia emissions from natural vegetation are calculated from net primary production, C:N ratio and an emission factor. The model accounts for in-canopy retention of the emitted NH3 (Bouwman et al., 1997).
A special case is N2O emissions after forest clearing. After deforestation, litter remaining on the soil surface as well as root material and soil organic matter decompose in the first years after clearing, which may lead to pulses of N2O emissions. To mimic this effect, emissions in the first year after clearing are assumed to be five times the flux in the original ecosystem. Emissions decrease linearly to the level of the new ecosystem in the tenth year, usually below the flux in the original forest. For more details, see Kreileman and Bouwman ([[Kreileman and Bouwman, 1994|1994]]).
For N2O emissions from agriculture, the determining factors in IMAGE are N application rate, climate type, soil organic carbon content, soil texture, drainage, soil pH, crop type, and fertiliser type. The main factors used to calculate NO emissions include N application rate per fertiliser type, and soil organic carbon content and soil drainage (for detailed description, see Bouwman et al. (2002a)). For NH3 emissions from fertilised cropland and grassland, the factors used in IMAGE are crop type, fertiliser application rate per type and application mode, temperature, soil pH, and CEC (Bouwman et al., 2002a).
 
For comparison with other models, IMAGE also includes the N2O methodology proposed by IPCC (2006). This methodology represents only anthropogenic emissions. For emissions from fertilizer fields this is the emission from a fertilized plot minus that from a control plot with zero fertilizer application. For this reason, soil emissions calculated with this methodology cannot be compared with the above model approaches, which yields total N2O emissions.
Land-use related emissions of NH3, N2O and NO are calculated withgrid-specific models.N2O from soils under natural vegetation is calculated with the model developed by Bouwman et al. (1993). This regression model is based on temperature, a proxy for soil carbon input, soil water and oxygen status, and for net primary production. Ammonia emissions from natural vegetation are calculated from net primary production, C:N ratio and an emission factor. The model accounts for in-canopy retention of the emitted NH3 ([[Bouwman et al., 1997]]).
 
For N2O emissions from agriculture, the determining factors in IMAGE are N application rate, climate type, soil organic carbon content, soil texture, drainage, soil pH, crop type, and fertiliser type. The main factors used to calculate NO emissions include N application rate per fertiliser type, and soil organic carbon content and soil drainage (for detailed description, see Bouwman et al. ([[Bouwman et al., 2002a|2002a]])). For NH3 emissions from fertilised cropland and grassland, the factors used in IMAGE are crop type, fertiliser application rate per type and application mode, temperature, soil pH, and CEC ([[Bouwman et al., 2002a]]).
 
For comparison with other models, IMAGE also includes the N2O methodology proposed by IPCC ([[IPCC, 2006|2006]]). This methodology represents only anthropogenic emissions. For emissions from fertilizer fields this is the emission from a fertilized plot minus that from a control plot with zero fertilizer application. For this reason, soil emissions calculated with this methodology cannot be compared with the above model approaches, which yields total N2O emissions.
}}
}}

Revision as of 10:19, 21 May 2014

Model description of Emissions