Browse data: Reference

Jump to navigation Jump to search
Reference > Period : 2006-2010 or 2016 up to today or None

Click on one or more items below to narrow your results.

Author:
Period: (Click arrow to add another value)

Showing below up to 212 results in range #1 to #212.

View (previous 750 | next 750) (20 | 50 | 100 | 250 | 500)

  1. AGECC, 2010 (AGECC (2010). Energy for a sustainable future. Summary report and recommendations, The secretary-general's Advisory group on Energy and climate Change, New York.)
  2. Ackah et al., 2009 (C. Ackah, M. Bussolo, R. De Hoyos, D. Medvedev (2009). A new dataset on global income distribution, The World Bank.)
  3. Admiraal et al., 2016 (A. K. Admiraal, A. F. Hof, M. G. J. den Elzen, D. P. van Vuuren (2016). Costs and benefits of differences in the timing of greenhouse gas emission reductions. Mitigation and Adaptation Strategies for Global Change, 21(8), pp. 1165-1179, doi: http://dx.doi.org/10.1007/s11027-015-9641-4.
    Link to PBL-website: http://www.pbl.nl/en/publications/costs-and-benefits-of-differences-in-the-timing-of-greenhouse-gas-emission-reductions.
    )
  4. Aguiar et al., 2016 (Angel Aguiar, Badri Narayanan, Robert McDougall (2016). An Overview of the GTAP 9 Data Base. Journal of Global Economic Analysis, 1(1), doi: http://dx.doi.org/https://doi.org/10.21642/JGEA.010103AF.)
  5. Alkemade et al., 2009 (R. Alkemade, M. Van Oorschot, L. Miles, C. Nellemann, M. Bakkenes, B. Ten Brink (2009). GLOBIO3: A framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems, 12(3), pp. 374-390.
    Link to PBL-website: http://www.pbl.nl/en/publications/2009/GLOBIO3-A-Framework-to-investigate-options-for-reducing-global-terrestrial-biodiversity-loss.
    )
  6. Bakkes et al., 2008 (J.A. Bakkes, P.R. Bosch, A.F. Bouwman, H.C. Eerens, M.G.J. den Elzen, M. Isaac, P.H.M. Janssen, K. Klein Goldewijk, T. Kram, F.A.A.M. de Leeuw, J.G.J. Olivier, M.M.P. van Oorschot, E.E. Stehfest, D.P. van Vuuren, P. Bagnoli, J. Chateau, J. Corfee-Morlot, Y-G. Kim (2008). Background report to the OECD Environmental Outlook to 2030. Overviews, details, and methodology of model-based analysis, J.A. BakkesP.R. Bosch (eds.), MNP. Link to PBL-website: http://www.pbl.nl/en/publications/2008/BackgroundreporttotheOECDEnvironmentalOutlookto2030.)
  7. Banse et al., 2008 (M Banse, H van Meijl, A Tabeau, G Woltjer (2008). Will EU biofuel policies affect global agricultural markets?. European Review of Agricultural Economics, 35, pp. 117-141.)
  8. Batjes, 2009 (N. H. Batjes (2009). Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use and Management, 25(2), pp. 124-127.)
  9. Bell and Tobin, 2007 (H.M. Bell, G.A. Tobin (2007). Efficient and effective? The 100-year flood in the communication and perception of flood risk. Environmental Hazards, 7, pp. 302-311.)
  10. Benitez-Lopez et al., 2010 (A. Benitez-Lopez, R. Alkemade, P. A. Verweij (2010). The impacts of roads and other infrastructure on mammal and bird populations: A meta-analysis. Biological Conservation, 143(6), pp. 1307-1316.)
  11. Beusen et al., 2008 (A. H. W. Beusen, A. F. Bouwman, P. S. C. Heuberger, G. Van Drecht, K. W. Van Der Hoek (2008). Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems. Atmospheric Environment, 42(24), pp. 6067-6077, doi: http://dx.doi.org/10.1016/j.atmosenv.2008.03.044.
    Link to PBL-website: http://www.pbl.nl/en/publications/2008/Bottom-up-uncertainty-estimate-of-global-ammonia-emissions-from-global-agricultural-production-systems.
    )
  12. Beusen et al., 2016 (A. H. W. Beusen, A. F. Bouwman, L. P. H. Van Beek, J. M. Mogollón, J. J. Middelburg (2016). Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences, 13(8), pp. 2441-2451, doi: http://dx.doi.org/10.5194/bg-13-2441-2016.)
  13. Biemans et al., 2009 (H. Biemans, R. W. A. Hutjes, P. Kabat, B. J. Strengers, D. Gerten, S. Rost (2009). Effects of precipitation uncertainty on discharge calculations for main river basins. Journal of Hydrometeorology, 10(4), pp. 1011-1025.)
  14. Bierkens and Van Beek, 2009 (M. F. P. Bierkens, L. P. H. Van Beek (2009). Seasonal predictability of European discharge: NAO and hydrological response time. Journal of Hydrometeorology, 10(4), pp. 953-968.)
  15. Bijl et al., 2016 (D. L. Bijl, P. W. Bogaart, T. Kram, B. J. M. de Vries, D. P. van Vuuren (2016). Long-term water demand for electricity, industry and households. Environmental Science and Policy, 55, pp. 75-86, doi: http://dx.doi.org/10.1016/j.envsci.2015.09.005.)
  16. Bijl et al., 2017 (D.L. Bijl, P.W. Bogaart, S.C. Dekker, E. Stehfest, B.J.M. de Vries, D.P. van Vuuren (2017). A physically-based model of long-term food demand. Global Environmental Change, 45, pp. 47-62, doi: http://dx.doi.org/10.1016/j.gloenvcha.2017.04.003.)
  17. Bijl et al., 2018a (D.L. Bijl, H. Biemans, P.W. Bogaart, S.C. Dekker, J.C. Doelman, E. Stehfest, D.P. van Vuuren (2018). A Global Analysis of Future Water Deficit Based On Different Allocation Mechanisms. Water Resources Research, 54(8), pp. 5803-5824, doi: http://dx.doi.org/10.1029/2017WR021688.)
  18. Bobbink et al., 2010 (R. Bobbink, K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore, M. Bustamante, S. Cinderby, E. Davidson, F. Dentener, B. Emmett, J. Erisman, M. Fenn, F. Gilliam, A. Nordin, L. Pardo, W. de Vries (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis.. Ecological Applications, 20(1), pp. 30-59.)
  19. Boccaccio and Petacchi, 2009 (L. Boccaccio, R. Petacchi (2009). Landscape effects on the complex of Bactrocera oleae parasitoids and implications for conservation biological control. BioControl, 54, pp. 607-616.)
  20. Bondeau et al., 2007 (A. Bondeau, P. C. Smith, S. Zaehle, S. Schaphoff, W. Lucht, W. Cramer, D. Gerten, H. Lotze-Campen, C. Müller, M. Reichstein, B. Smith (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13(3), pp. 679-706.)
  21. Bouwer et al., 2010 (L. M. Bouwer, P. Bubeck, J. C. J. H. Aerts (2010). Changes in future flood risk due to climate and development in a Dutch polder area. Global Environmental Change, 20(3), pp. 463-471.)
  22. Bouwman et al., 2006 (A.F. Bouwman, K.W. van der Hoek, G. Van Drecht, B. Eickhout (2006). World livestock and crop production systems, land use and environment between 1970 and 2030. In: F. BrouwerB. McCarl (eds.), Rural Lands, Agriculture and Climate beyond 2015: A new perspective on future land use patterns. Springer, Dordrecht, pp. 75-89, URL: http://www.pbl.nl/en/publications/2006/Worldlivestockandcropproductionsystemslanduseandenvironmentbetween1970and2030.)
  23. Braakhekke et al., 2019 (Braakhekke, M. C., Doelman, J. C., Baas, P., Müller, C., Schaphoff, S., Stehfest, E., van Vuuren, D. P. (2019). Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model. Earth System Dynamics, 10(4), pp. 617-630, doi: http://dx.doi.org/https://doi.org/10.5194/esd-10-617-2019.
    Link to PBL-website: https://www.pbl.nl/en/publications/modeling-forest-plantations-for-carbon-uptake-with-the-lpjml-dynamic-global-vegetation-model.
    )
  24. Braspenning Radu et al., 2016 (O. Braspenning Radu, M. van den Berg, Z. Klimont, S. Deetman, G. Janssens-Maenhout, M. Muntean, C. Heyes, F. Dentener, D. P. van Vuuren (2016). Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios. Atmospheric Environment, 140, pp. 577-591, doi: http://dx.doi.org/10.1016/j.atmosenv.2016.05.021.
    Link to PBL-website: http://www.pbl.nl/en/publications/exploring-synergies-between-climate-and-air-quality-policies-using-long-term-global-and-regional-emission-scenarios.
    )
  25. Cairncross and Valdmanis, 2006 (S. Cairncross, V. Valdmanis (2006). Water supply, sanitation, and hygiene promotion, Disease control priorities in developing countries. Oxford University Press, New York, pp. 771-792.)
  26. Carle and Holmgren, 2008 (J. Carle, P. Holmgren (2008). Wood from Planted Forests. Forest Products Journal, 58(12), pp. 6-18.)
  27. Carpenter et al., 2006 (S.R. Carpenter, P. Pingali, E.M. Bennet, M.B. Zurek (2006). Ecosystems and human well-being: scenarios, Millennium Ecosystem Assessment - MA (2005) project (eds.), Island Press, Washington, D.C., 2.)
  28. Carson, 2010 (R.T. Carson (2010). The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure. Review of Environmental Economics and Policy, 4(1), pp. 3-23, doi: http://dx.doi.org/10.1093/reep/rep021.)
  29. Cengic et al., 2020 (Mirza Čengić, Jasmijn Rost, Daniela Remenska, Jan H. Janse, Mark A. J. Huijbregts, and Aafke M. Schipper (2020). On the importance of predictor choice, modelling technique, and number of pseudo‐absences for bioclimatic envelope model performance. Ecology and Evolution, 10(21), pp. 12307–12317, doi: http://dx.doi.org/10.1002/ece3.6859.)
  30. Chen and Ravallion, 2008 (S. Chen, M. Ravallion (2008). The developing world Is poorer than we thought, but no less successful in the fight against poverty, World Bank Policy Research Working Paper, World Bank, Washington DC.)
  31. DEA, 2018 (Danish Energy Agency (2018). Note on technology costs for offshore wind farms and the background for updating CAPEX and OPEX in the technology catalogue datasheets, Danish Ministry of Energy, Utilities and Climate(URL: https://ens.dk/sites/ens.dk/files/Analyser/havvindsnotat_translation_eng_final.pdf).)
  32. Dagnachew et al., 2018 (A.G. Dagnachew, P.L. Lucas, A.F. Hof, D.P. van Vuuren (2018). Trade-offs and synergies between universal electricity access and climate change mitigation in Sub-Saharan Africa. Energy Policy, 114, pp. 355-366, doi: http://dx.doi.org/10.1016/j.enpol.2017.12.023.)
  33. Dagnachew et al., 2020 (Anteneh G.Dagnachew, Andries F.Hof, Paul L.Lucas, Detlef P.van Vuuren (2020). Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits. Energy, 192, doi: http://dx.doi.org/https://doi.org/10.1016/j.energy.2019.116641.)
  34. Daioglou et al., 2019 (V. Daioglou, J.C. Doelman, B. Wicke, A. Faaij, D.P. van Vuuren (2019). Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Global Environmental Change, 54, pp. 88-101, doi: http://dx.doi.org/10.1016/j.gloenvcha.2018.11.012.)
  35. Daioglou et al., 2022 (Vassilis Daioglou, Efstratios Mikropoulos, David Gernaat, Detlef P.van Vuuren (2022). Efficiency improvement and technology choice for energy and emission reductions of the residential sector. Energy, 243, doi: http://dx.doi.org/https://doi.org/10.1016/j.energy.2021.122994.)
  36. De Boer and Van Vuuren, 2017 (H.S. de Boer and D.P. van Vuuren (2017). Representation of variable renewable energy source in TIMER, an aggregated energy system simulation model. Energy Economics, 64, pp. 600-611, doi: http://dx.doi.org/http://doi.org/10.1016/j.eneco.2016.12.006.
    Link to PBL-website: http://www.pbl.nl/en/publications/representation-of-variable-renewable-energy-sources-in-timer-an-aggregated-energy-system-simulation-model.
    )
  37. De Bruin et al., 2009 (K. C. de Bruin, R. B. Dellink, R. S. J. Tol (2009). AD-DICE: An implementation of adaptation in the DICE model. Climatic Change, 95(1-2), pp. 63-81, doi: http://dx.doi.org/10.1007/s10584-008-9535-5.)
  38. De Vos et al., 2021 (Lotte de Vos, Hester Biemans, Jonathan C Doelman, Elke Stehfest and Detlef P van Vuuren (2021). Trade-offs between water needs for food, utilities, and the environment—a nexus quantification at different scales. Environmental Research Letters, 16(11), doi: http://dx.doi.org/https://doi.org/10.1088/1748-9326/ac2b5e.)
  39. De Vries et al., 2007 (B. J. M. de Vries, D. P. van Vuuren, M. M. Hoogwijk (2007). Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach. Energy Policy, 35(4), pp. 2590-2610, doi: http://dx.doi.org/10.1016/j.enpol.2006.09.002.)
  40. Dellink et al., 2017 (R. Dellink, J. Chateau, E. Lanzi, B. Magné (2017). Long-term economic growth projections in the Shared Socioeconomic Pathways.. Global Environmental Change, 42, pp. 200-214, doi: http://dx.doi.org/10.1016/j.gloenvcha.2015.06.004.)
  41. Den Elzen and Höhne, 2010 (M.G.J den Elzen, N. Höhne (2010). Sharing the reduction effort to limit global warming to 2°C. Climate Policy, 10, pp. 247-260.)
  42. Den Elzen and van Vuuren, 2007 (M.G.J. den Elzen, D.P. van Vuuren (2007). Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 104(46), pp. 17931-17936, doi: http://dx.doi.org/10.1073/pnas.0701598104.
    Link to PBL-website: http://www.pbl.nl/en/publications/2007/Peakingprofilesforachievingtemperaturetargets.
    )
  43. Den Elzen et al., 2007 (M. den Elzen, M. Meinshausen, D. van Vuuren (2007). Multi-gas emission envelopes to meet greenhouse gas concentration targets: Costs versus certainty of limiting temperature increase. Global Environmental Change, 17(2), pp. 260-280, doi: http://dx.doi.org/10.1016/j.gloenvcha.2006.10.003.
    Link to PBL-website: http://www.pbl.nl/en/publications/2007/Multi-gasemissionenvelopestomeetgreenhousegasconcentrationtargets_Costsversuscertaintyoflimitingtemperature.
    )
  44. Den Elzen et al., 2008 (M. G. J. Den Elzen, P. L. Lucas, D. P. Van Vuuren (2008). Regional abatement action and costs under allocation schemes for emission allowances for achieving low CO2-equivalent concentrations. Climatic Change, 90(3), pp. 243-268, doi: http://dx.doi.org/10.1007/s10584-008-9466-1.
    Link to PBL-website: http://www.pbl.nl/en/publications/2008/Regional-abatement-action-and-costs-under-allocation-schemes-for-emission-allowances-for-achieving-low-CO2.
    )
  45. Den Elzen et al., 2016 (M. den Elzen, A. Admiraal, M. Roelfsema, H. van Soest, A. F. Hof, N. Forsell (2016). Contribution of the G20 economies to the global impact of the Paris agreement climate proposals. Climatic Change, 137(3-4), pp. 655-665, doi: http://dx.doi.org/10.1007/s10584-016-1700-7.
    Link to PBL-website: http://www.pbl.nl/en/publications/contribution-of-the-g20-economies-to-the-global-impact-of-the-paris-agreement-climate-proposals.
    )
  46. Denman et al., 2007 (K.L. Denman, G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, P.L. da Silva Dias, S.C. Wofsy, X. Zhang (2007). Couplings Between Changes in the Climate System and Biogeochemistry.. In: S. SolomonD. QinM. ManningZ. ChenM. MarquisK.B. AverytM. TignorH.L. Miller (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA..)
  47. Diaz and Rosenberg, 2008 (R. J. Diaz, R. Rosenberg (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), pp. 926-929.)
  48. Doelman et al., 2018 (J.C. Doelman, E. Stehfest, A. Tabeau, H. van Meijl, L. Lassaletta, K. Neumann-Hermans, D.E.H.J. Gernaat, M. Harmsen, V. Daioglou, H. Biemans, S. van der Sluis, D.P. van Vuuren (2018). Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 48(January), pp. 119-135, doi: http://dx.doi.org/10.1016/j.gloenvcha.2017.11.014.
    Link to PBL-website: http://www.pbl.nl/en/publications/exploring-ssp-land-use-dynamics-using-the-image-model-regional-and-gridded-scenarios-of-land-use-change-and-land-ba.
    )
  49. Doelman et al., 2019 (Doelman, Jonathan C, Stehfest, Elke, van Vuuren, Detlef P, Tabeau, Andrzej, Hof, Andries F, Braakhekke, Maarten C, Gernaat, David EHJ, van den Berg, Maarten, van Zeist, Willem‐Jan, Daioglou, Vassilis (2019). Afforestation for climate change mitigation: Potentials, risks and trade-offs. Global Change Biology, 26(3), pp. 1576-1591, doi: http://dx.doi.org/https://doi.org/10.1111/gcb.14887.
    Link to PBL-website: https://www.pbl.nl/publications/afforestation-for-climate-change-mitigation-potentials-risks-and-trade-offs.
    )
  50. Doelman et al., 2020b (Jonathan C. Doelman, Elke Stehfest, Andrzej Tabeau, Hans van Meijl, Luis Lassaletta, David E.H.J. Gernaat, Kathleen Hermans, Mathijs Harmsen, Vassilis Daioglou, Hester Biemans, Sietske van der Sluis, Detlef P.van Vuuren (2020). Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 48, pp. 119-135, doi: http://dx.doi.org/https://doi.org/10.1016/j.gloenvcha.2017.11.014.)
  51. EC, 2010 (EC (2010). Energy 2020: A strategy for competitive, sustainable and secure energy, Communication from the commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions, European Commission, Brussels.)
  52. EC-JRC/PBL, 2016 (EC-JRC/PBL (2016). European Commission, Joint Research Centre (EC-JRC)/Netherlands Environmental Assessment Agency (PBL). Emissions Database for Global Atmospheric Research (EDGAR), release EDGAR v4.3.2 (1970 - 2012) of March 2016, http://edgar.jrc.ec.europa.eu.)
  53. EFI, 2007 (European forest institute (2007). Long-term European forest resources assessment.EFI.Helsinki, Finland.Access date: 2011-04-15.URL: http://www.efi.int/databases/ltfra)
  54. ESA, 2017 (European Space Agency (2017). Climate Change Initiative (ESA-CCI) V2.0.7.European Space Agency.URL: https://maps.elie.ucl.ac.be/CCI/viewer/download.php)
  55. Edelenbosch et al., 2017b (O. Y. Edelenbosch, D. L. McCollum, D. P. van Vuuren, C. Bertram, S. Carrara, H. Daly, S. Fujimori, A. Kitous, P. Kyle, E. Ó Broin, P. Karkatsoulis, F. Sano (2016). Decomposing passenger transport futures: Comparing results of global integrated assessment models. Transportation Research Part D: Transport and Environment, doi: http://dx.doi.org/10.1016/j.trd.2016.07.003.)
  56. Egoh et al., 2008 (B. Egoh, B. Reyers, M. Rouget, D.M. Richardson, D.C. Le Maitre, A.S. van Jaarsveld (2008). Mapping ecosystem services for planning and management. Agriculture, ecosystems & environment, 127(1-2), pp. 135-140, doi: http://dx.doi.org/10.1016/j.agee.2008.03.013.)
  57. Egoh et al., 2009 (B. Egoh, B. Reyers, M. Rouget, M. Bode, D.M. Richardson (2009). Spatial congruence between biodiveristy and ecosystem services in South Africa. Biological Conservation, 142(3), pp. 553-562.)
  58. Eickhout et al., 2007 (B. Eickhout, H. van Meijl, A. Tabeau, T. van Rheenen (2007). Economic and ecological consequences of four European land use scenarios. Land Use Policy, 24(3), pp. 562-575, doi: http://dx.doi.org/10.1016/j.landusepol.2006.01.004.
    Link to PBL-website: http://www.pbl.nl/en/publications/2007/EconomicandecologicalconsequencesoffourEuropeanlandusescenarios.
    )
  59. Eickhout et al., 2009 (B. Eickhout, H. van Meijl, A. Tabeau, E. Stehfest (2009). The impact of environmental and climate constraints on global food supply. In: T.W. HertelS.K. RoseR.S.J. Tol (eds.), Economic Analysis of Land Use in Global Climate Change Policy. Routledge, New York, pp. 85-106, URL: 10.4324/9780203882962.)
  60. European Commission, 2010 (European Commission (2010). Analysis of options to move beyond 20% greenhouse gas emission reductions and assessing the risk of carbon leakage.Brussels.Access date: 2010.URL: http://ec.europa.eu/environment/climat/future_action.htm.)
  61. FAO et al., 2009 (FAO, IIASA, ISRIC, ISSCAS, JRC (2009). Harmonized world soil database (version 1.1).FAO / IIASA.Rome, Italy / Laxenburg, Austria.URL: http://www.fao.org/nr/land/soils/harmonized-world-soil-database/en/)
  62. FAO, 2006b (FAO (2006). Global Planted forestst thematic study: results and analysis, by Del Lungo, A., Ball, J. & Carle, J., Food and Agriculture Organization of the United Nations, Rome.)
  63. FAO, 2008 (FAO (2008). Forests and energy; Key issuesS.)
  64. FAO, 2010 (FAO (2010). Global Forest Resources Assessment 2010, FAO, Food and Agriculture Organization of the United Nations, Rome(URL: http://www.fao.org/forestry/fra/fra2010/en/).)
  65. FAO, 2015 (FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (2016). Global Forest Resources Assessment 2015, FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, Rome(URL: https://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/).)
  66. FAO, 2020 (Food and Agriculture Organization of the United Nations (2020). Global Forest Resources Assessment 2020 (FRA 2020), Food and Agriculture Organization of the United Nations, Food and Agriculture Organization of the United Nations, Rome(URL: https://doi.org/10.4060/ca9825en).)
  67. Fader et al., 2010 (M. Fader, S. Rost, C. Müller, A. Bondeau, D. Gerten (2010). Virtual water content of temperate cereals and maize: Present and potential future patterns. Journal of Hydrology, 384(3-4), pp. 218-231, doi: http://dx.doi.org/10.1016/j.jhydrol.2009.12.011.)
  68. Faith et al., 2008 (D.P. Faith, S. Ferrier, K.J. Williams (2008). Getting biodiversity intactness indices right: ensuring that 'biodiversity' reflects 'diversity'. Global Change Biology, 14, pp. 207-217.)
  69. Fekete et al., 2010 (B.M. Fekete, D. Wisser, C. Kroeze, E. Mayorga, L. Bouwman, W.M. Wollheim, C. Vörösmarty (2010). Millennium ecosystem assessment scenario drivers (1970–2050): climate and hydrological alterations. Global Biogeochemical Cycles, 24(4), doi: http://dx.doi.org/10.1029/2009GB003593.)
  70. Forster et al., 2007 (P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, R. Van Dorland (2007). Changes in atmospheric constituents and in radiative forcing. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S.D. QinM. R. ManningZ. ChenM. MarquisK.B. AverytM. TignorH.L. Miller (eds.), Climate Change 2007: The Physical Science Basis.. Cambridge University Press, Cambridge, United Kingdom / New York, NY, USA., pp. 131-217.)
  71. Frank et al., 2019 (S. Frank, P. Havlík, E. Stehfest, H. van Meijl, P. Witzke, I. Pérez-Domínguez, M. van Dijk, J.C. Doelman, T. Fellmann, J.F.L. Koopman, A. Tabeau, H. Valin (2019). Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change, 9(1), pp. 66-72, doi: http://dx.doi.org/10.1038/s41558-018-0358-8.)
  72. Friedlingstein et al., 2019 (Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle (2019). Global Carbon Budget 2019. Earth System Science Data, 11, pp. 1783–1838, doi: http://dx.doi.org/https://doi.org/10.5194/essd-11-1783-2019.)
  73. Gallai et al., 2009 (N. Gallai, J-M. Salles, J. Settele, B.E. Vaissière (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68(3), pp. 810-821.)
  74. Gernaat et al., 2017 (D.E.H.J. Gernaat, P.W. Bogaart, D.P.V. Vuuren, H. Biemans, R. Niessink (2017). High-resolution assessment of global technical and economic hydropower potential. Nature Energy, 2(10), pp. 821-828, doi: http://dx.doi.org/10.1038/s41560-017-0006-y.)
  75. Gernaat et al., 2021 (David E. H. J. Gernaat, Harmen Sytze de Boer, Vassilis Daioglou, Seleshi G. Yalew, Christoph Müller, Detlef P. van Vuuren (2021). Climate change impacts on renewable energy supply. Nature Climate Change, 11, pp. 119-125, doi: http://dx.doi.org/https://doi.org/10.1038/s41558-020-00949-9.)
  76. Godfray et al., 2010 (H. C. J. Godfray, J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, C. Toulmin (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), pp. 812-818.)
  77. Goldewijk et al., 2017 (K.K. Goldewijk, A. Beusen, J. Doelman, E. Stehfest (2017). Anthropogenic land use estimates for the Holocene - HYDE 3.2. Earth System Science Data, 9(2), pp. 927-953, doi: http://dx.doi.org/10.5194/essd-9-927-2017.)
  78. Harmsen et al., 2016 (M. J. H. M. Harmsen, M. van den Berg, V. Krey, G. Luderer, A. Marcucci, J. Strefler, D. P. V. Vuuren (2016). How climate metrics affect global mitigation strategies and costs: a multi-model study. Climatic Change, 136(2), pp. 203-216, doi: http://dx.doi.org/10.1007/s10584-016-1603-7.)
  79. Harmsen et al., 2019a (Mathijs Harmsen, Detlef P. van Vuuren, Benjamin Leon Bodirsky, Jean Chateau, Olivier Durand-Lasserve, Laurent Drouet, Oliver Fricko, Shinichiro Fujimori, David E.H.J. Gernaat, Tatsuya Hanaoka, Jérôme Hilaire, Kimon Keramidas, Gunnar Luderer, Maria Cecilia P. Moura, Fuminori Sano, Steven J. Smith, Kenichi Wada (2019). The role of methane in future climate strategies: Mitigation potentials and climate impacts. Climatic Change (in press).)
  80. Harmsen et al., 2019b (Mathijs Harmsen, Oliver Fricko, Jérôme Hilaire, Detlef P. van Vuuren, Laurent Drouet, Olivier Durand-Lasserve, Shinichiro Fujimori, Kimon Keramidas, Zbigniew Klimont, Gunnar Luderer, Lara Aleluia Reis, Keywan Riahi, Fuminori Sano, Steven J. Smith (2019). Taking some heat off the NDCs? The limited potential of additional short-lived climate forcers’ mitigation. Climatic Change (under review).)
  81. Harmsen et al., 2019c (Mathijs J.H.M. Harmsen, Detlef P. van Vuuren, Dali R. Nayak, Andries F. Hof, Lena Höglund-Isaksson, Paul L. Lucas, Jens B. Nielsen, Pete Smith, Elke Stehfest (2019). Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environmental Science and Policy (under review).)
  82. Harnisch et al., 2009 (J. Harnisch, S. Klaus, S. Wartmann, J.M. Rhiemeier (2009). Development of F-gas module for TIMER model, ECOFYS, Nuremberg.)
  83. Hartmann et al., 2010 (H. Hartmann, G. Daoust, B. Bigué, C. Messier (2010). Negative or positive effects of plantation and intensive forestry on biodiversity: a matter of scale. Forestry Chronicle, 86(3), pp. 354-364, doi: http://dx.doi.org/10.5558/tfc86354-3.)
  84. Helming et al., 2010 (J Helming, S Jansen, H van Meijl, A Tabeau (2010). European farming and post-2013 CAP measures, LEI Wageningen UR, Wageningen.)
  85. Hilderink and Lucas, 2008 (H.B.M. Hilderink, P.L. Lucas (2008). Towards a global integrated sustainability model: GISMO 1.0 status report, PBL Netherlands Environmental Assessment Agency, The Hague.
    Link to PBL-website: http://www.pbl.nl/en/publications/2008/Towards-a-Global-Integrated-Sustainability-Model-GISMO1.0-status-report.
    )
  86. Hinkel and Klein, 2009 (J. Hinkel, R. J. T. Klein (2009). Integrating knowledge to assess coastal vulnerability to sea-level rise: The development of the DIVA tool. Global Environmental Change, 19(3), pp. 384-395.)
  87. Hoesly et al., 2018 (Rachel M. Hoesly, Steven J. Smith, Leyang Feng, Zbigniew Klimont, Greet Janssens-Maenhout, Tyler Pitkanen, Jonathan J. Seibert, Linh Vu, Robert J. Andres, Ryan M. Bolt, Tami C. Bond, Laura Dawidowski, Nazar Kholod, June-ichi Kurokawa, Meng Li, Liang Liu, Zifeng Lu, Maria Cecilia P. Moura, Patrick R. Rourke, Qiang Zhang (2018). Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11(1), pp. 369-408, doi: http://dx.doi.org/10.5194/gmd-11-369-2018.)
  88. Hof et al., 2008 (A. F. Hof, M. G. J. den Elzen, D. P. van Vuuren (2008). Analysing the costs and benefits of climate policy: Value judgements and scientific uncertainties. Global Environmental Change, 18(3), pp. 412-424, doi: http://dx.doi.org/10.1016/j.gloenvcha.2008.04.004.
    Link to PBL-website: http://www.pbl.nl/en/publications/2008/Analysing-the-costs-and-benefits-of-climate-policy_-Value-judgements-and-scientific-uncertainties.
    )
  89. Hof et al., 2009 (A. F. Hof, K. C. de Bruin, R. B. Dellink, M. G. J. den Elzen, D. P. van Vuuren (2009). The effect of different mitigation strategies on international financing of adaptation. Environmental Science and Policy, 12(7), pp. 832-843, doi: http://dx.doi.org/10.1016/j.envsci.2009.08.007.)
  90. Hof et al., 2010 (A. F. Hof, M. G. J. den Elzen, D. P. van Vuuren (2010). Including adaptation costs and climate change damages in evaluating post-2012 burden-sharing regimes. Mitigation and Adaptation Strategies for Global Change, 15(1), pp. 19-40, doi: http://dx.doi.org/10.1007/s11027-009-9201-x.
    Link to PBL-website: http://www.pbl.nl/en/publications/2010/Including-adaptation-costs-and-climate-change-damages-in-evaluating-post-2012-burden-sharing-regimes.
    )
  91. Hof et al., 2016 (A. F. Hof, M. G. J. den Elzen, A. Mendoza Beltran (2016). The EU 40% greenhouse gas emission reduction target by 2030 in perspective. International Environmental Agreements: Politics, Law and Economics, 16(3), pp. 375-392, doi: http://dx.doi.org/10.1007/s10784-016-9317-x.
    Link to PBL-website: https://www.pbl.nl/en/publications/the-eu-40-procent-greenhouse-gas-emission-reduction-target-by-2030-in-perspective.
    )
  92. Hof et al., 2017 (A.F. Hof, M.G.J. den Elzen, A. Admiraal, M. Roelfsema, D.E.H.J. Gernaat, D.P. van Vuuren (2017). Global and regional abatement costs of Nationally Determined Contributions (NDCs) and of enhanced action to levels well below 2 °C and 1.5 °C. Environmental Science and Policy, 71, pp. 30-40, doi: http://dx.doi.org/10.1016/j.envsci.2017.02.008.)
  93. Hoogwijk et al., 2007 (M. Hoogwijk, D. van Vuuren, B. de Vries, W. Turkenburg (2007). Exploring the impact on cost and electricity production of high penetration levels of intermittent electricity in OECD Europe and the USA, results for wind energy. Energy, 32(8), pp. 1381-1402, doi: http://dx.doi.org/10.1016/j.energy.2006.09.004.
    Link to PBL-website: http://www.pbl.nl/en/publications/2007/Exploringtheimpactoncostandelectricityproductionofhighpenetrationlevelsofintermittentelectricityin.
    )
  94. Hurtt et al., 2020 (George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang (2020). Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 12, pp. 5425–5464, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-13-5425-2020.)
  95. Hutton et al., 2006 (G. Hutton, E. Rehfuess, F. Tediosi, S. Weiss (2006). Evaluation of the costs and benefits of household energy and health interventions at global and regional levels, World Health Organisation (WHO), Geneva.)
  96. IEA, 2019 (International Energy Agency (2019). The Future of Hydrogen(URL: https://www.iea.org/reports/the-future-of-hydrogen).)
  97. IEA, 2021 (IEA (2021). World Energy Outlook 2021, International Energy Agency(URL: https://www.iea.org/reports/world-energy-outlook-2021).)
  98. IPCC, 2006 (IPCC (2006). IPCC Guidelines for national greenhouse gas inventories, Prepared by the National Greenhouse Gas Inventories Programme, IGES, Japan.)
  99. IPCC, 2007a (IPCC (2007). Climate Change 2007 - The physical science basis: contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom / New York, NY, USA.)
  100. IPCC, 2019 (P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.) (2019). Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, IPCC(URL: https://www.ipcc.ch/site/assets/uploads/sites/4/2019/12/02_Summary-for-Policymakers_SPM.pdf).)
  101. IPCC-DDC, 2007 (IPCC-DDC (2007). AR4 GCM data: SRES scenarios.IPCC Data Distribution Centre (DDC).URL: http://www.ipcc-data.org/sim/gcm_monthly/SRES_AR4/index.html)
  102. IRENA, 2016 (IRENA (2016). REsource.International Renewable Energy Agency.URL: http://resourceirena.irena.org/)
  103. IRENA, 2020 (IRENA (2020). Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5oC climate goal, International Renewable Energy Agency(URL: https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction).)
  104. IRENA, 2022 (IRENA (2022). Statistics Time Series.International Renewable Energy Agency.URL: https://www.irena.org/Data/View-data-by-topic/Capacity-and-Generation/Statistics-Time-Series)
  105. Isaac and van Vuuren, 2009 (M. Isaac, D. van Vuuren (2009). Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy, 37, pp. 507-521.
    Link to PBL-website: http://www.pbl.nl/en/publications/2009/Modeling_global_residential_sector_energy_demand_for_heating_and_air_conditioning.
    )
  106. Jeppesen et al., 2009 (E. Jeppesen, B. Kronvang, M. Meerhoff, M. Søndergaard, K.M. Hansen, H.E. Andersen, T.L. Lauridsen, M. Beklioglu, A. Ozen, J.E. Olesen (2009). Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations.. Journal of Environmental Quality, 38, pp. 1930-1941.)
  107. Jewell et al., 2016 (Jessica Jewell, Vadim Vinichenko, David McCollum, Nico Bauer, Keywan Riahi, Tino Aboumahboub, Oliver Fricko, Mathijs Harmsen, Tom Kober, Volker Krey, Giacomo Marangoni, Massimo Tavoni, Detlef P. van Vuuren, Bob van der Zwaan & Aleh Cherp (2016). Comparison and interactions between the long-term pursuit of energy independence and climate policies. Nature Energy, 1, doi: http://dx.doi.org/10.1038/nenergy.2016.73.)
  108. Kleijn and Langevelde, 2006 (D. Kleijn, F. Langevelde (2006). Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic and applied ecology, 7(3), pp. 201-214.)
  109. Klein Goldewijk et al., 2010 (K. Klein Goldewijk, A. Beusen, P. Janssen (2010). Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene, 20(4), pp. 565-573, doi: http://dx.doi.org/10.1177/0959683609356587.
    Link to PBL-website: http://www.pbl.nl/en/publications/2010/Long-term-dynamic-modeling-of-global-population-and-built-up-area-in-a-spatially-explicit-way_-HYDE-3.1.
    )
  110. Kok et al., 2009 (Kok M., Jager J., Karlsson S.I., Ludeke M.B., Mohammed-Katerere J., Thomalla F. (2009). Report on Chapter 7 of GEO-4 Vulnerability of people and the environment - challenges and opportunities. Background Report on Chapter 7 of GEO-4, PBL. Link to PBL-website: http://www.pbl.nl/en/publications/2009/Vulnerability-of-people-and-the-environment-challenges-and-opportunities.)
  111. Kourzeneva, 2010 (E. Kourzeneva (2010). External data for lake parameterization in Numerical Weather Prediction and climate modeling.. Boreal Environment Research, 15, pp. 165-177.)
  112. Kruyt et al., 2009 (B. Kruyt, D. P. van Vuuren, H. J. M. de Vries, H. Groenenberg (2009). Indicators for energy security. Energy Policy, 37(6), pp. 2166-2181, doi: http://dx.doi.org/10.1016/j.enpol.2009.02.006.
    Link to PBL-website: http://www.pbl.nl/en/publications/2009/Indicators-for-energy-security.
    )
  113. Kuramochi et al., 2016 (Kuramochi, T., Höhne, N., Sterl, S., Gonzales-Zuñiga, S., Hans, F., Hagemann, M., Hernandez Legaria, E., den Elzen, M.G.J., Roelfsema, M., van Soest, H., Forsell, N., Turkovska, O. (2016). Greenhouse gas mitigation scenarios for major emitting countries: Analysis of current and planned climate policies, and mitigation pledges. Link to PBL-website: http://www.pbl.nl/en/publications/greenhouse-gas-mitigation-scenarios-for-major-emitting-countries.)
  114. Lamarque et al., 2010 (J. F. Lamarque, T. C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B. Owen, M. G. Schultz, D. Shindell, S. J. Smith, E. Stehfest, J. Van Aardenne, O. R. Cooper, M. Kainuma, N. Mahowald, J. R. McConnell, V. Naik, K. Riahi, D. P. Van Vuuren (2010). Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10(15), pp. 7017-7039, doi: http://dx.doi.org/10.5194/acp-10-7017-2010.)
  115. Lapola et al., 2009 (D. M. Lapola, J.A. Priess, A. Bondeau (2009). Modeling the land requirements and potential productivity of sugarcane and jatropha in Brazil and India using the LPJmL dynamic global vegetation model. Biomass and Bioenergy, 33(8), pp. 1087-1095.)
  116. Leclère et al., 2020 (David Leclère, Michael Obersteiner, Mike Barrett, Stuart H. M. Butchart, Abhishek Chaudhary, Adriana De Palma, Fabrice A. J. DeClerck, Moreno Di Marco, Jonathan C. Doelman, Martina Dürauer, Robin Freeman, Michael Harfoot, Tomoko Hasegawa, Stefanie Hellweg, Jelle P. Hilbers, Samantha L. L. Hill, Florian Humpenöder, Nancy Jennings, Tamás Krisztin, Georgina M. Mace, Haruka Ohashi, Alexander Popp, Andy Purvis, Aafke M. Schipper, Andrzej Tabeau, Hugo Valin, Hans van Meijl, Willem-Jan van Zeist, Piero Visconti, Rob Alkemade, Rosamunde Almond, Gill Bunting, Neil D. Burgess, Sarah E. Cornell, Fulvio Di Fulvio, Simon Ferrier, Steffen Fritz, Shinichiro Fujimori, Monique Grooten, Thomas Harwood, Petr Havlík, Mario Herrero, Andrew J. Hoskins, Martin Jung, Tom Kram, Hermann Lotze-Campen, Tetsuya Matsui, Carsten Meyer, Deon Nel, Tim Newbold, Guido Schmidt-Traub, Elke Stehfest, Bernardo B. N. Strassburg, Detlef P. van Vuuren, Chris Ware, James E. M. Watson, Wenchao Wu, Lucy Young (2020). Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 585, pp. 551–556, doi: http://dx.doi.org/https://doi.org/10.1038/s41586-020-2705-y.)
  117. Leverington et al., 2010 (F. Leverington, K. Lemos Costa, J. Courrau, H. Pavese, C. Nolte, M. Marr, L. Coad, N. Burgess, Bomhard B., M. Hockings (2010). Management effectiveness evaluation in protected areas - a global study, The University of Queensland, The Nature Conservancy/WWF/University of Queensland/IUCN/WCPA/Biodiversity Indicators Partnership, Brisbane, Australia.)
  118. Lucas et al., 2007 (P. L. Lucas, D. P. van Vuuren, J. G. J. Olivier, M. G. J. den Elzen (2007). Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science and Policy, 10(2), pp. 85-103, doi: http://dx.doi.org/10.1016/j.envsci.2006.10.007.
    Link to PBL-website: http://www.pbl.nl/en/publications/2007/Long-termreductionpotentialofnon-CO2greenhousegases.
    )
  119. Luderer et al., 2017 (G. Luderer, R.C. Pietzcker, S. Carrara, H.S. de Boer, S. Fujimori, N. Johnson, S. Mima, D. Arent (2017). Assessment of wind and solar power in global low-carbon energy scenarios: An introduction. Energy Economics, 64(May 2017), pp. 542-551, doi: http://dx.doi.org/10.1016/j.eneco.2017.03.027.
    Link to PBL-website: http://www.pbl.nl/en/publications/assessment-of-wind-and-solar-power-in-global-low-carbon-energy-scenarios-an-introduction.
    )
  120. Lutz and KC, 2010 (Wolfgang Lutz, Samir KC (2010). Dimensions of global population projections: what do we know about future population trends and structures?. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), pp. 2779-2791.)
  121. Lutz et al., 2007 (W. Lutz, A. Goujon, K.C. Samir, W. Sanderson (2007). Reconstruction of population by age, sex and level of educational attainment of 120 countries for 1970-2000, Vienna Yearbook of Population Research. Austrian Academy of Sciences Press, Vienna, 2007, pp. 193-235.)
  122. MNP, 2006 (MNP (2006). Integrated modelling of global environmental change : an overview of IMAGE 2.4, A. F. BouwmanT. KramK. Klein Goldewijk (eds.), Netherlands Environmental Assessment Agency (MNP), Bilthoven, The Netherlands. Link to PBL-website: http://www.pbl.nl/en/publications/2006/Integratedmodellingofglobalenvironmentalchange.AnoverviewofIMAGE2.4.)
  123. Mathers and Loncar, 2006 (C.D. Mathers, D. Loncar (2006). Projections of global mortality and burden of disease from 2002 to 2030. Plos Medicine, 3(11), doi: http://dx.doi.org/10.1371/journal.pmed.0030442.)
  124. Meehl et al., 2007 (G.A. Meehl, T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver, Z.-C. Zhao (2007). Global Climate Projections. In: S. SolomonD. QinM. ManningZ. ChenM. MarquisK.B. AverytM. TignorH.L. Miller (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.)
  125. Meijer and Klein Goldewijk, 2009 (J. Meijer, K. Klein Goldewijk (2009). Global Roads Inventory Project (GRIP).PBL Netherlands Environmental Assessment Agency.The Hague.URL: http://geoservice.pbl.nl/website/GRIP)
  126. Molden, 2007 (D. Molden (2007). Water for food, water for life: A comprehensive assessment of water management in agriculture, Earthscan / International Water Management Institute, London / Colombo.)
  127. Morandin et al., 2007 (L.A. Morandin, M.L. Winston, V.A. Abbott, M.T. Franklin (2007). Can pastureland increase wild bee abundance in agriculturally intense areas?. Basic and applied ecology, 8, pp. 117-124.)
  128. Moss et al., 2010 (R. H. Moss, J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P. Van Vuuren, T. R. Carter, S. Emori, M. Kainuma, T. Kram, G. A. Meehl, J. F. B. Mitchell, N. Nakicenovic, K. Riahi, S. J. Smith, R. J. Stouffer, A. M. Thomson, J. P. Weyant, T. J. Wilbanks (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), pp. 747-756, doi: http://dx.doi.org/10.1038/nature08823.)
  129. Mulders et al., 2006 (F.M.M. Mulders, J.M.M. Hettelar, F. Van Bergen (2006). Assessment of the global fossil fuel reserves and resources for TIMER, TNO Built Environment and Geosciences, Utrecht, The Netherlands.)
  130. Musters et al., submitted (C.J.M. Musters, R.J.T. Verweij, M. Bakkenes, D.P. Faith, S. Ferrier, R. Alkemade (in preparation). Present and future species survival: a new method for local, regional, and global estimations. in preparation; available on request.)
  131. Müller et al., 2007 (C. Müller, B. Eickhout, S. Zaehle, A. Bondeau, W. Cramer, W. Lucht (2007). Effects of changes in CO2, climate, and land use on the carbon balance of the land biosphere during the 21st century. Journal of Geophysical Reseach - Biogeosciences, 112, pp. G02032, doi: http://dx.doi.org/10.1029/2006JG000388.
    Link to PBL-website: http://www.pbl.nl/en/publications/2007/EffectsofchangesinCO2climateandlanduseonthecarbonbalanceofthelandbiosphereduringthe21stcentury.
    )
  132. Müller et al., 2009 (C. Müller, A. Bondeau, A. Popp, K. Waha, M. Fader (2009). Climate change impacts on agricultural yields, Background note for the World Development Report 2010. Contribution to the World Development Report 2010: Development and Climate Change., The World Bank, Washington, DC.)
  133. Müller et al., 2016a (C. Müller, E. Stehfest, J. G. Van Minnen, B. Strengers, W. Von Bloh, A. H. W. Beusen, S. Schaphoff, T. Kram, W. Lucht (2016). Drivers and patterns of land biosphere carbon balance reversal. Environmental Research Letters, 11(4), doi: http://dx.doi.org/10.1088/1748-9326/11/4/044002.)
  134. Müller et al., 2016b (Ch. Müller, E. Stehfest, J.G. van Minnen, B. Strengers, W. von Bloh, A. Beusen, S. Schaphoff, T. Kram, W. Lucht (2016). Reversal of the land biosphere carbon balance under climate and land-use change. Environmental Research Letters, 11(4), doi: http://dx.doi.org/http://dx.doi.org/10.1088/1748-9326/11/4/044002.
    Link to PBL-website: http://www.pbl.nl/en/publications/drivers-and-patterns-of-land-biosphere-carbon-balance-reversal.
    )
  135. Neelis et al., 2006 (Neelis, M.L., Patel, M.K. (2006). Long-term production, energy use and CO2 emission scenarios for the worldwide iron and steel industry, UU CHEM NW&S (Copernicus), URL: http://dspace.library.uu.nl/handle/1874/21823.)
  136. Nelson, 2008 (A Nelson (2008). Estimated travel time to the nearest city of 50000 or more people in the year 2000.JRC.Ispra, Italy.Access date: 2013-10-03.URL: http://bioval.jrc.ec.europa.eu/products/gam/index.htm)
  137. Neumann, 2010 (K. Neumann (2010). Explaining agricultural intensity at the European and global scale.Ph.D. thesis.pp 168.Wageningen University.The Netherlands..
    Link to PBL-website: http://www.pbl.nl/en/publications/2010/Explaining-agricultural-intensity-at-the-European-and-global-scale.
    )
  138. O'Farrell et al., 2010 (P.J. O'Farrell, B. Reyers, D.C. Le Maitre, S.J. Milton, B. Egoh, A. Maherry, C. Colvin, D. Atkinson, W. De Lange, J.N. Blignaut, R.M. Cowling (2010). Multi-functional landscapes in semi arid environments: Implications for biodiversity and ecosystem services. Landscape ecology, 25(8), pp. 1231-1246, doi: http://dx.doi.org/10.1007/s10980-010-9495-9.)
  139. OECD, 2008 (OECD (2008). Environmental outlook to 2030, OECD Publications, Paris, France.
    Link to PBL-website: http://www.pbl.nl/en/publications/2008/BackgroundreporttotheOECDEnvironmentalOutlookto2030.
    )
  140. Oorschot et al., 2010 (M. Oorschot, J. Ros, J. Notenboom (2010). Evaluation of the indirect effects of biofuel production on biodiversity: assessment across spatial and temporal scales, PBL Netherlands Environmental Assessment Agency, Bilthoven, the Netherlands. Link to PBL-website: http://www.pbl.nl/en/publications/2010/Evaluation-of-the-indirect-effects-of-biofuel-production-on-biodiversity.)
  141. PBL, 2009 (PBL (2009). Beyond 2015: Long-term development and the Millennium Development Goals, PBL Netherlands Environmental Assessment Agency, Bilthoven. Link to PBL-website: http://www.pbl.nl/en/publications/2009/Beyond-2015_-Long-term-development-and-the-Millennium-Development-Goals.)
  142. PBL, 2010 (PBL (2010). Rethinking global biodiversity strategies, PBL Netherlands Environmental Assessment Agency, The Hague. Link to PBL-website: http://www.pbl.nl/en/publications/2010/Rethinking_Global_Biodiversity_Strategies.)
  143. Palma et al., 2021 (Adriana Palma, Katia Sanchez-Ortiz, Helen R.P Phillips, Andy Purvis (2021). Calculating the Biodiversity Intactness Index: the PREDICTS implementation.URL: https://doi.org/10.5281/ZENODO.5642946)
  144. Pandey et al., 2006 (K.D. Pandey, D. Wheeler, B. Ostro, U. Deichmann, K. Hamilton, K. Bolt (2006). Ambient particulate matter concentrations in residential and pollution hotspot areas of world cities: New estimates based on the global model of ambient particulates (GMAPS), World Bank, Development Research Group and Environment Department, Washington DC.)
  145. Pietzcker et al., 2017 (R. Pietzcker, F. Ueckerdt, S. Carrara, H.S. de Boer, J. Despres, S. Fujimori, N. Johnson, A. Kitous, Y. Scholz, P. Sullivan, G. Luderer (2017). System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches. Energy Economics, 64(May 2017), pp. 583-599, doi: http://dx.doi.org/10.1016/j.eneco.2016.11.018.)
  146. Pitman et al., 2009 (A. Pitman, N de Noublet-Ducoudré, F. T. Cruz, E. L. Davin, G.B. Bonan, V. Brovkin, M. Claussen, C. Delire, L. Ganzeveld, V. Gayler, B.J.J.M. van den Hurk, P.J. Lawrence, M.K. van der Molen, Christoph Müller, C.H. Reick, S.I. Seneviratne, B J Strengers, A. Voldoire (2009). Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophysical Research Letters, 36, pp. L14814, doi: http://dx.doi.org/10.1029/2009GL039076.)
  147. Portmann et al., 2010 (F. T. Portmann, S. Siebert, P. Doll (2010). MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24, pp. GB1011, doi: http://dx.doi.org/10.1029/2008GB003435.)
  148. Prentice et al., 2007 (I.C. Prentice, A. Bondeau, W. Cramer, S.P. Harrison, T. Hickler, W. Lucht, S. Sitch, B. Smith, M.T. Sykes (2007). Dynamic global vegetation modelling: quantifying terrestrial ecosystem responses to large-scale environmental change. In: Canadell J.D.Pataki E.Pitelka L.F. (eds.), Terrestrial Ecosystems in a Changing World. Springer-Verlag, Berlin, pp. 175-192.)
  149. Randall et al., 2007 (D.A. Randall, R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R. J. Stouffer, A. Sumi, K. E. Taylor (2007). Climate models and their evaluation. In: S. SolomonD. QinM. ManningZ. ChenM. MarquizK.B. AverytM. TignorH.L. Miller (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom / New York, NY, USA..)
  150. Rao et al., 2016 (S. Rao, Z. Klimont, J. Leitao, K. Riahi, R. Van Dingenen, L. A. Reis, K. Calvin, F. Dentener, L. Drouet, S. Fujimori, M. Harmsen, G. Luderer, C. Heyes, J. Strefler, M. Tavoni, D. P. Van Vuuren (2016). A multi-model assessment of the co-benefits of climate mitigation for global air quality. Environmental Research Letters, 11(12), doi: http://dx.doi.org/10.1088/1748-9326/11/12/124013.)
  151. Rao et al., 2017 (S. Rao, Z. Klimont, K. Riahi, M. Amann, O. Fricko, P. Havlik, C. Heyes (2017). Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change, 42, pp. 346-358, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.05.012.)
  152. Ravallion et al., 2008 (M. Ravallion, S. Chen, P. Sangraula (2008). Dollar a day revisited, Policy Research Working Paper Series, World Bank, Washington.)
  153. Rogelj et al., 2016 (Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534, pp. 631-639, doi: http://dx.doi.org/10.1038/nature18307.)
  154. Rohwer et al., 2007 (J. Rohwer, D. Gerten, W. Lucht (2007). Development of functional types of irrigation for improved global crop modelling, PIK.)
  155. Rolinski et al., 2018 (Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Bodirsky, B. L., Bondeau, A., Boons-Prins, E. R., Bouwman, A. F., Leffelaar, P. A., te Roller, J. A., Schaphoff, S., Thonicke, K. (2018). Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6. Geoscientific Model Development, 11(1), pp. 429-451, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-429-2018.)
  156. Roorda and Neelis, 2006 (C. Roorda, M. Neelis (2006). Inclusion of production, energy use and value added for steel, cement and paper in the TIMER energy demand module, Universiteit Utrecht, UU CHEM NW&S (Copernicus), Utrecht(URL: http://dspace.library.uu.nl/handle/1874/21828).)
  157. Rost et al., 2008 (S. Rost, D. Gerten, A. Bondeau, W. Lucht, J. Rohwer, S. Schaphoff (2008). Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research, 44, pp. W09405, doi: http://dx.doi.org/10.1029/2007WR006331.)
  158. Rost et al., 2009 (S. Rost, D. Gerten, H. Hoff, W. Lucht, M. Falkenmark, J. Rockstrom (2009). Global potential to increase crop production through water management in rainfed agriculture. Environmental Research Letters, 4(4), doi: http://dx.doi.org/10.1088/1748-9326/4/4/044002.)
  159. S&P, 2017 (S&P Global Market Intelligence (2017). World Electric Power Plants Database, March 2017.Harvard Dataverse.URL: https://doi.org/10.7910/DVN/OKEZ8A)
  160. SCBD, 2010 (sCBD (2010). Strategic action plan for biodiversity 2011-2020 and the Aichi targets.secretariat of the Convention on Biological Diversity.Montreal, Canada.)
  161. Salvagiotti et al., 2008 (F. Salvagiotti, K. G. Cassman, J. E. Specht, D. T. Walters, A. Weiss, A. Dobermann (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108(1), pp. 1-13.)
  162. Schaphoff et al., 2018a (Sibyll Schaphoff, Werner von Bloh, Anja Rammig, Kirsten Thonicke, Hester Biemans, Matthias Forkel, Dieter Gerten, Jens Heinke, Jonas Jägermeyr, Jürgen Knauer, Fanny Langerwisch, Wolfgang Lucht, Christoph Müller, Susanne Rolinski, and Katharina Waha (2018). LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description. Geoscientific Model Development, 11, pp. 1343–1375, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-1343-2018.)
  163. Schaphoff et al., 2018b (Sibyll Schaphoff, Matthias Forkel, Christoph Müller, Jürgen Knauer, Werner von Bloh, Dieter Gerten, Jonas Jägermeyr, Wolfgang Lucht, Anja Rammig, Kirsten Thonicke, and Katharina Waha (2018). LPJmL4 – a dynamic global vegetation model with managed land – Part 2: Model evaluation. Geoscientific Model Development, 11, pp. 1377–1403, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-1377-2018.)
  164. Schipper et al., 2020 (Schipper A.M., Hilbers J.P., Meijer J.R., Antão L.H., Benítez-López A., de Jonge M.M.J., Leemans L.H., Scheper E., Alkemade R., Doelman J.C., Mylius S., Stehfest E., van Vuuren D.P., van Zeist W.-J. (2020). Projecting terrestrial biodiversity intactness with GLOBIO 4. Global Change Biology, 26(2), pp. 760-771, doi: http://dx.doi.org/10.1111/gcb.14848.)
  165. Schoots et al., 2008 (K.Schoots, F.Ferioli, G.J.Kramer, B.C.C.van der Zwaan (2008). Learning curves for hydrogen production technology: An assessment of observed cost reductions. International Journal of Hydrogen Energy, 33(11), pp. 2630-2645, doi: http://dx.doi.org/https://doi.org/10.1016/j.ijhydene.2008.03.011.)
  166. Seitzinger et al., 2010 (S. P. Seitzinger, E. Mayorga, A. F. Bouwman, C. Kroeze, A. H. W. Beusen, G Billen, G. Van Drecht, E. Dumont, B. M. Fekete, J. Garnier, J. A. Harrison (2010). Global river nutrient export: A scenario analysis of past and future trends. Global Biogeochemical Cycles, 24(4).)
  167. Siebert, 2010 (S. Siebert (2010). . Hydrology and Earth System Sciences Discussions, 7, pp. 3977-4021.)
  168. Stehfest et al., 2009 (E. Stehfest, L. Bouwman, D. P. Van Vuuren, M. G. J. Den Elzen, B. Eickhout, P. Kabat (2009). Climate benefits of changing diet. Climatic Change, 95(1-2), pp. 83-102, doi: http://dx.doi.org/10.1007/s10584-008-9534-6.
    Link to PBL-website: http://www.pbl.nl/en/publications/2009/Climate-benefits-of-changing-diet.
    )
  169. Stehfest et al., 2019 (Elke Stehfest, Willem-Jan van Zeist, Hugo Valin, Petr Havlik, Alexander Popp, Page Kyle, Andrzej Tabeau, Daniel Mason-D’Croz, Tomoko Hasegawa, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Shinichiro Fujimori, Florian Humpenöder, Hermann Lotze-Campen, Hans van Meijl and Keith Wiebe (2019). Key determinants of global land-use projections. Nature Communications, 10, doi: http://dx.doi.org/https://doi.org/10.1038/s41467-019-09945-w.)
  170. Stoorvogel et al., 2017 (J. J. Stoorvogel, M. Bakkenes, A.J.A.M. Temme, N.H. Batjes, B.J.E. ten Brink (2017). S-World: A Global Soil Map for Environmental Modelling. Land Degradation and Development, 28(1), pp. 22-33, doi: http://dx.doi.org/10.1002/ldr.2656.)
  171. Strengers et al., 2008 (B. J. Strengers, J. G. Van Minnen, B. Eickhout (2008). The role of carbon plantations in mitigating climate change: Potentials and costs. Climatic Change, 88(3-4), pp. 343-366, doi: http://dx.doi.org/10.1007/s10584-007-9334-4.)
  172. Strengers et al., 2010 (B J Strengers, C Müller, M Schaeffer, R Haarsma, C. Severijns, R. van den Houdt, R. Oostenrijk (2010). Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model. International Journal of Climatology, 30(13), pp. 2055-2065, doi: http://dx.doi.org/10.1002/joc.2132.
    Link to PBL-website: http://www.pbl.nl/en/publications/2010/Assessing-20th-century-climate-vegetation-feedbacks-of-land-use-change-and-natural-vegetation-dynamics.
    )
  173. TEEB, 2010a (TEEB (2010). The economics of ecosystems and biodiversity ecological and economic foundations, Earthscan, Londen and Washington.
    Link to PBL-website: http://www.pbl.nl/en/publications/2010/Prospects-for-Mainstreaming-Ecosystem-Goods-and-Services-in-International-Policies.
    )
  174. TEEB, 2010b (TEEB (2010). Mainstreaming the economics of nature: a synthesis of the approach, conclusions and recommendations of TEEB(URL: http://www.unep.org/pdf/LinkClick.pdf).)
  175. UNDP, 2010 (UNDP (2010). Human Development Report 2010 - The real wealth of nations: pathways to human development, United Nations Development Programme, New York.)
  176. UNEP (2016) (UNEP, PBL contribution M.G.J. den Elzen, J.G.J Olivier, M.R. Roelfsema (2016). The Emissions Gap Report 2016. United Nations Environment, UNEP, UNEP, Nairobi. Link to PBL-website: http://www.pbl.nl/en/publications/unep-emissions-gap-report-2016.)
  177. UNEP-WCMC, 2008 (UNEP-WCMC (2008). Carbon and biodiversity: a demonstration atlas, UNEP-WCMC, Cambridge, United Kingdom.)
  178. Ueckerdt et al., 2016 (F. Ueckerdt, R. Pietzcker, Y. Scholz, D. Stetter, A. Giannousakis, G. Luderer (2016). Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model. Energy Economics, doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.eneco.2016.05.012.)
  179. Van Beek and Bierkens, 2009 (L. P. H. van Beek, M. F. P. Bierkens (2009). The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification.Department of Physical Geography.Utrecht University, The Netherlands.URL: http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf)
  180. Van Drecht et al., 2009 (G. Van Drecht, A. F. Bouwman, J. Harrison, J. M. Knoop (2009). Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Global Biogeochemical Cycles, 23(3), pp. GB0A03, doi: http://dx.doi.org/10.1029/2009GB003458.
    Link to PBL-website: http://www.pbl.nl/en/publications/2009/Global-nitrogen-and-phosphate-in-urban-wastewater-for-the-period-1970-to-2050.
    )
  181. Van Meijl et al., 2006 (H. Van Meijl, T. Van Rheenen, A. Tabeau, B. Eickhout (2006). The impact of different policy environments on agricultural land use in Europe. Agriculture, Ecosystems and Environment, 114(1), pp. 21-38, doi: http://dx.doi.org/10.1016/j.agee.2005.11.006.)
  182. Van Meijl et al., 2018 (H. Van Meijl, P. Havlik, H. Lotze-Campen, E. Stehfest, P. Witzke, I.P. Domínguez, B.L. Bodirsky, M. Van Dijk, J. Doelman, T. Fellmann, F. Humpenöder, J.F.L. Koopman, C. Müller, A. Popp, A. Tabeau, H. Valin, W.-J. Van Zeist (2018). Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 13(6), doi: http://dx.doi.org/10.1088/1748-9326/aabdc4.)
  183. Van Minnen et al., 2008 (J. G. van Minnen, B. J. Strengers, B. Eickhout, R. J. Swart, R. Leemans (2008). Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model. Carbon Balance and Management, 3(3), doi: http://dx.doi.org/10.1186/1750-0680-3-3.
    Link to PBL-website: http://www.pbl.nl/en/publications/2008/Quantifying-the-effectiveness-of-climate-change-mitigation-through-forest-plantations-and-carbon-sequestration.
    )
  184. Van Ruijven et al., 2007 (B. van Ruijven, D. P. van Vuuren, B. de Vries (2007). The potential role of hydrogen in energy systems with and without climate policy. International Journal of Hydrogen Energy, 32(12), pp. 1655-1672, doi: http://dx.doi.org/10.1016/j.ijhydene.2006.08.036.
    Link to PBL-website: http://www.pbl.nl/en/publications/2007/Thepotentialroleofhydrogeninenergysystemswithandwithoutclimatepolicy.
    )
  185. Van Ruijven et al., 2008 (B. van Ruijven, L. Hari, D. P. van Vuuren, B. de Vries (2008). The potential role of hydrogen energy in India and Western Europe. Energy Policy, 36(5), pp. 1649-1665, doi: http://dx.doi.org/10.1016/j.enpol.2008.01.020.
    Link to PBL-website: http://www.pbl.nl/en/publications/2008/Modeling-Energy-and-Development_-An-Evaluation-of-Models-and-Concepts.
    )
  186. Van Ruijven et al., 2010a (B. van Ruijven, B. de Vries, D. P. van Vuuren, J. P. van der Sluijs (2010). A global model for residential energy use: Uncertainty in calibration to regional data. Energy, 35(1), pp. 269-282, doi: http://dx.doi.org/10.1016/j.energy.2009.09.019.
    Link to PBL-website: http://www.pbl.nl/en/publications/2010/A-global-model-for-residential-energy-use_-Uncertainty-in-calibration-to-regional-data.
    )
  187. Van Ruijven et al., 2010b (B. van Ruijven, J. P. van der Sluijs, D. P. van Vuuren, P. Janssen, P. S. C. Heuberger, B. de Vries (2010). Uncertainty from model calibration: Applying a new method to transport energy demand modelling. Environmental Modeling and Assessment, 15(3), pp. 175-188, doi: http://dx.doi.org/10.1007/s10666-009-9200-z.)
  188. Van Ruijven et al., 2016 (B. J. Van Ruijven, D. P. Van Vuuren, W. Boskaljon, M. L. Neelis, D. Saygin, M. K. Patel (2016). Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resources, Conservation and Recycling, 112, pp. 15-36, doi: http://dx.doi.org/10.1016/j.resconrec.2016.04.016.)
  189. Van Sluisveld et al., 2021 (Mariësse A.E. van Sluisveld, Harmen Sytze de Boer, Vassilis Daioglou, Andries F.Hof, Detlef P.van Vuuren (2021). A race to zero - Assessing the position of heavy industry in a global net-zero CO2 emissions context. Energy and Climate Change, 2, doi: http://dx.doi.org/https://doi.org/10.1016/j.egycc.2021.100051.)
  190. Van Vuuren et al., 2006 (D. P. van Vuuren, J. Cofala, H. E. Eerens, R. Oostenrijk, C. Heyes, Z. Klimont, M. G. J. den Elzen, M. Amann (2006). Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe. Energy Policy, 34(4), pp. 444-460, doi: http://dx.doi.org/10.1016/j.enpol.2004.06.012.
    Link to PBL-website: http://www.pbl.nl/en/publications/2004/Exploring_the_ancillary_benefits_of_the_Kyoto_Protocol_for_air_pollution_in_Europe.
    )
  191. Van Vuuren et al., 2007a (D. P. Van Vuuren, M. G. J. Den Elzen, P. L. Lucas, B. Eickhout, B. J. Strengers, B. Van Ruijven, S. Wonink, R. Van Houdt (2007). Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change, 81(2), pp. 119-159, doi: http://dx.doi.org/10.1007/s10584-006-9172-9.
    Link to PBL-website: http://www.pbl.nl/en/publications/2007/Stabilizinggreenhousegasconcentrationsatlowlevels_anassessmentofreductionstrategiesandcosts.
    )
  192. Van Vuuren et al., 2007b (D. P. van Vuuren, P. L. Lucas, H. Hilderink (2007). Downscaling drivers of global environmental change: Enabling use of global SRES scenarios at the national and grid levels. Global Environmental Change, 17(1), pp. 114-130, doi: http://dx.doi.org/10.1016/j.gloenvcha.2006.04.004.
    Link to PBL-website: http://www.pbl.nl/en/publications/2006/DownscalingDriversOfGlobalEnvironmentalChangeScenarios.
    )
  193. Van Vuuren et al., 2008 (D. P. van Vuuren, B. de Vries, A. Beusen, P. S. C. Heuberger (2008). Conditional probabilistic estimates of 21st century greenhouse gas emissions based on the storylines of the IPCC-SRES scenarios. Global Environmental Change, 18(4), pp. 635-654, doi: http://dx.doi.org/10.1016/j.gloenvcha.2008.06.001.
    Link to PBL-website: http://www.pbl.nl/en/publications/2008/Conditional-probabilistic-estimates-of-21st-century-greenhouse-gas-emissions-based-on-the-storylines.
    )
  194. Van Vuuren et al., 2009 (D. P. van Vuuren, J. van Vliet, E. Stehfest (2009). Future bio-energy potential under various natural constraints. Energy Policy, 37(11), pp. 4220-4230, doi: http://dx.doi.org/10.1016/j.enpol.2009.05.029.
    Link to PBL-website: http://www.pbl.nl/en/publications/2009/Future-bio-energy-potential-under-various-natural-constraints.
    )
  195. Van Vuuren et al., 2010 (D. P. Van Vuuren, E. Bellevrat, A. Kitous, M. Isaac (2010). Bio-energy use and low stabilization scenarios. Energy Journal, 31(SPECIAL ISSUE), pp. 193-222.
    Link to PBL-website: http://www.pbl.nl/en/publications/2010/Bio-Energy-Use-and-Low-Stabilization-Scenarios.
    )
  196. Van Vuuren et al., 2017b (D. P. van Vuuren, E. Stehfest, D. E. H. J. Gernaat, J. C. Doelman, M. van den Berg, M. Harmsen, H. S. de Boer, L. F. Bouwman, V. Daioglou, O. Y. Edelenbosch, B. Girod, T. Kram, L. Lassaletta, P. L. Lucas, H. van Meijl, C. Müller, B. J. van Ruijven, S. van der Sluis, A. Tabeau (2017). Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 42, pp. 237-250, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.05.008.)
  197. Van Vuuren et al., 2018 (D.P. Van Vuuren, E. Stehfest, D.E.H.J. Gernaat, M. Van Den Berg, D.L. Bijl, H.S. De Boer, V. Daioglou, J.C. Doelman, O.Y. Edelenbosch, M. Harmsen, A.F. Hof, M.A.E. Van Sluisveld (2018). Alternative pathways to the 1.5 °c target reduce the need for negative emission technologies. Nature Climate Change, 8(5), pp. 391-397, doi: http://dx.doi.org/10.1038/s41558-018-0119-8.)
  198. Van Vuuren et al., 2021 (Detlef van Vuuren, Elke Stehfest , David Gernaat, Harmen-Sytze de Boer , Vassilis Daioglou , Jonathan Doelman , Oreane Edelenbosch , Mathijs Harmsen , Willem-Jan van Zeist , Maarten van den Berg , Ioannis Dafnomilis , Mariesse van Sluisveld , Andrzej Tabeau , Lotte De Vos , Liesbeth de Waal, Nicole van den Berg , Arthur Beusen , Astrid Bos , Hester Biemans , Lex Bouwman , Hsing-Hsuan Chen, Sebastiaan Deetman , Anteneh Dagnachew , Andries Hof , Hans van Meijl , Johan Meyer, Stratos Mikropoulos, Mark Roelfsema , Aafke Schipper , Heleen Van Soest , Isabela Tagomori , Victhalia Zapata Castillo (2021). The 2021 SSP scenarios of the IMAGE 3.2 model, doi: http://dx.doi.org/https://doi.org/10.31223/X5CG92.)
  199. Van Vuuren, 2007 (D.P. van Vuuren (2007). Energy systems and climate policy: Long-term scenarios for an uncertain future.Science, Technology and Society.Ph.D. thesis.pp 326.Utrecht University.Utrecht, The Netherlands.)
  200. Van den Berg et al., 2020 (Van den Berg et al. (2020). Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Climatic Change, 162, pp. 1805-1822, doi: http://dx.doi.org/https://link.springer.com/article/10.1007/s10584-019-02368-y.
    Link to PBL-website: https://www.pbl.nl/en/publications/implications-of-various-effort-sharing-approaches-for-national-carbon-budgets-and-emission-pathways.
    )
  201. Van der Esch et al., 2017 (Stefan van der Esch, Ben ten Brink, Elke Stehfest, Michel Bakkenes, Annelies Sewell, Arno Bouwman, Johan Meijer, Henk Westhoek, Maurits van den Berg (2017). Exploring future changes in land use and land condition and the impacts on food, water, climate change and biodiversity: Scenarios for the UNCCD Global Land Outlook, PBL, PBL, Den Haag. Link to PBL-website: https://www.pbl.nl/en/publications/exploring-future-changes-in-land-use.)
  202. Velders et al., 2009 (G. J. M. Velders, D. W. Fahey, J. S. Daniel, M. McFarland, S. O. Andersen (2009). The large contribution of projected HFC emissions to future climate forcing. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 106(27), pp. 10949-10954.
    Link to PBL-website: http://www.pbl.nl/en/publications/2009/The-large-contribution-of-projected-HFC-emissions-to-future-climate-forcing.
    )
  203. Verburg et al., 2009 (R. Verburg, E. Stehfest, G. Woltjer, B. Eickhout (2009). The effect of agricultural trade liberalisation on land-use related greenhouse gas emissions. Global Environmental Change, 19(4), pp. 434-446, doi: http://dx.doi.org/10.1016/j.gloenvcha.2009.06.004.
    Link to PBL-website: http://www.pbl.nl/en/publications/2009/The-effect-of-agricultural-trade-liberalisation-on-land-use-related-greenhouse-gas-emissions.
    )
  204. Vetter et al., 2008 (M. Vetter, G. Churkina, M. Jung, M. Reichstein, S. Zaehle, A. Bondeau, Y. Chen, P. Ciais, F. Feser, A. Freibauer, R. Geyer, C. Jones, D. Papale, J. Tenhunen, E. Tomelleri, K. Trusilova, N. Viovy, M. Heimann (2008). Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models. Biogeosciences, 5(2), pp. 561-583.)
  205. Von Bloh et al., 2018 (Werner von Bloh, Sibyll Schaphoff, Christoph Müller, Susanne Rolinski, Katharina Waha, and Sönke Zaehle (2018). Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geoscientific Model Development, 11, pp. 2789–2812, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-2789-2018.)
  206. WEC, 2010 (WEC (2010). Energy resources. Online data resource., World Energy Council, London.)
  207. WHO, 2009 (WHO (2009). Global health risks: Mortality and burden of disease attributable to selected major risks, World Health Organization, Geneva.)
  208. Weijters et al., 2009 (M.J. Weijters, J.H. Janse, R. Alkemade, J. T. A. Verhoeven (2009). Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 19(1), pp. 104-112, doi: http://dx.doi.org/10.1002/aqc.989.)
  209. Westhoek et al., in preparation (H. Westhoek, E. Stehfest, M. Berg van den, G Woltjer (in preparation). Effects on global agricultural greenhouse gas emissions from changes in EU diets and husbandry systems. Animals - in preparation; available on request.)
  210. World Bank, 2009 (World Bank (2009). World development indicators.World Bank.Washington DC.URL: www.worldbank.org/data)
  211. Zalasiewicz et al., 2010 (J. Zalasiewicz, M. Williams, W. Steffen, P. Crutzen (2010). The new world of the Anthropocene1. Environmental Science & Technology, 44(7), pp. 2228-2231, doi: http://dx.doi.org/10.1021/es903118j.)
  212. Zhang et al., 2010 (J. Zhang, D. Gilbert, A. J. Gooday, L. Levin, S. W. A. Naqvi, J. J. Middelburg, M. Scranton, W. Ekau, A. Peña, B. Dewitte, T. Oguz, P. M. S. Monteiro, E. Urban, N. N. Rabalais, V. Ittekkot, W. M. Kemp, O. Ulloa, R. Elmgren, E. Escobar-Briones, A. K. Van der Plas (2010). Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences, 7(5), pp. 1443-1467.)

View (previous 750 | next 750) (20 | 50 | 100 | 250 | 500)