Browse data: IMAGE publication

Jump to navigation Jump to search
IMAGE publication > Period : 2016 up to today or 2011-2015

Click on one or more items below to narrow your results.

Author:
Period: (Click arrow to add another value)

Showing below up to 291 results in range #1 to #291.

View (previous 750 | next 750) (20 | 50 | 100 | 250 | 500)

  1. AgMIP, 2014 (AgMIP (2014). Special issue (AgMIP). Agricultural Economics, 45(1), pp. 1-116, doi: http://dx.doi.org/10.1111/agec.2014.45.issue-1.)
  2. Alexander et al., 2017 (P. Alexander, R. Prestele, P. H. Verburg, A. Arneth, C. Baranzelli, F. Batista e Silva, C. Brown, A. Butler, K. Calvin, N. Dendoncker, J. C. Doelman, R. Dunford, K. Engström, D. Eitelberg, S. Fujimori, P. A. Harrison, T. Hasegawa, P. Havlik, S. Holzhauer, F. Humpenöder, C. Jacobs-Crisioni, A. K. Jain, T. Krisztin, P. Kyle, C. Lavalle, T. Lenton, J. Liu, P. Meiyappan, A. Popp, T. Powell, R. D. Sands, R. Schaldach, E. Stehfest, J. Steinbuks, A. Tabeau, H. van Meijl, M. A. Wise, M. D. A. Rounsevell (2017). Assessing uncertainties in land cover projections. Global Change Biology, 23(2), pp. 767-781, doi: http://dx.doi.org/10.1111/gcb.13447.)
  3. Alkemade et al., 2011 (R. Alkemade, M. Bakkenes, B. Eickhout (2011). Towards a general relationship between climate change and biodiversity: An example for plant species in Europe. Regional Environmental Change, 11(SUPPL. 1), pp. 143-150, doi: http://dx.doi.org/10.1007/s10113-010-0161-1.)
  4. Amann et al., 2011 (Markus Amann, Imrich Bertok,Jens Borken-Kleefeld, Janusz Cofala,Chris Heyes, Lena Höglund-Isaksson, Zbigniew Klimont, Binh Nguyen, Maximilian Posch, Peter Rafaj, Robert Sandler, Wolfgang Schöpp, Fabian Wagner, Wilfried Winiwarter (2011). Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling & Software, 26(12), pp. 1489-1501, doi: http://dx.doi.org/10.1016/j.envsoft.2011.07.012.)
  5. Arnell et al., 2011 (N. W. Arnell, D. P. van Vuuren, M. Isaac (2011). The implications of climate policy for the impacts of climate change on global water resources. Global Environmental Change, 21(2), pp. 592-603, doi: http://dx.doi.org/10.1016/j.gloenvcha.2011.01.015.)
  6. BGR, 2015 (Bundesanstalt für Geowissenschaften und rohstoffe (BGR) (2015). Energiestudie 2016. reserven, ressourcen und Verfügbarkeit von energierohstoffen.)
  7. BISE, 2013 (BISE (2013). EU biodiversity targets and related global Aichi targets..)
  8. Banse et al., 2014 (M. Banse, F. Junker, A. G. Prins, E. Stehfest, A. Tabeau, G. Woltjer, H. Van Meijl (2014). Global impact of multinational biofuel mandates on land use, feedstock prices, international trade and land-use greenhouse gas emissions. Landbauforschung Volkenrode, 64(2), pp. 59-72, doi: http://dx.doi.org/10.3220/LBF-2014-59-72.)
  9. Barbarossa et al., 2017 (V. Barbarossa, M. A. J. Huijbregts, A. J. Hendriks, A. H. W. Beusen, J. Clavreul, H. King, A. M. Schipper (2017). Developing and testing a global-scale regression model to quantify mean annual streamflow. Journal of Hydrology, 544, pp. 479-487, doi: http://dx.doi.org/10.1016/j.jhydrol.2016.11.053.)
  10. Bauer et al., 2015 (N. Bauer, V. Bosetti, M. Hamdi-Cherif, A. Kitous, D. McCollum, A. Méjean, S. Rao, H. Turton, L. Paroussos, S. Ashina, K. Calvin, K. Wada, D. van Vuuren (2015). CO2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies. Technological Forecasting and Social Change, 90(PA), pp. 243-256, doi: http://dx.doi.org/10.1016/j.techfore.2013.09.009.)
  11. Bauer et al., 2017 (N. Bauer, K. Calvin, J. Emmerling, O. Fricko, S. Fujimori, J. Hilaire, J. Eom, V. Krey, E. Kriegler, I. Mouratiadou, H. Sytze de Boer, M. van den Berg, S. Carrara, V. Daioglou, L. Drouet, J. E. Edmonds, D. Gernaat, P. Havlik, N. Johnson, D. Klein, P. Kyle, G. Marangoni, T. Masui, R. C. Pietzcker, M. Strubegger, M. Wise, K. Riahi, D. P. van Vuuren (2017). Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives. Global Environmental Change, 42, pp. 316-330, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.07.006.)
  12. Beltran et al., 2011 (A. Mendoza Beltran, M. G. J. den Elzen, A. F. Hof, D. P. van Vuuren, J. van Vliet (2011). Exploring the bargaining space within international climate negotiations based on political, economic and environmental considerations. Energy Policy, 39(11), pp. 7361-7371, doi: http://dx.doi.org/10.1016/j.enpol.2011.08.065.)
  13. Berkhout et al., 2015 (F. Berkhout, L. M. Bouwer, J. Bayer, M. Bouzid, M. Cabeza, S. Hanger, A. Hof, P. Hunter, L. Meller, A. Patt, B. Pfluger, T. Rayner, K. Reichardt, A. van Teeffelen (2015). European policy responses to climate change: progress on mainstreaming emissions reduction and adaptation. Regional Environmental Change, 15(6), pp. 949-959, doi: http://dx.doi.org/10.1007/s10113-015-0801-6.)
  14. Beusen et al., 2011 (A. H. W. Beusen, P. J. F. de Vink, A. C. Petersen (2011). The dynamic simulation and visualization software MyM. Environmental Modelling and Software, 26(2), pp. 238-240, doi: http://dx.doi.org/10.1016/j.envsoft.2010.07.002.)
  15. Beusen et al., 2013 (A. H. W. Beusen, C. P. Slomp, A. F. Bouwman (2013). Global land-ocean linkage: Direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environmental Research Letters, 8(3), doi: http://dx.doi.org/10.1088/1748-9326/8/3/034035.)
  16. Bijl et al., 2018b (D.L. Bijl, P.W. Bogaart, S.C. Dekker, D.P. van Vuuren (2018). Unpacking the nexus: Different spatial scales for water, food and energy. Global Environmental Change, 48, pp. 22-31, doi: http://dx.doi.org/10.1016/j.gloenvcha.2017.11.005.)
  17. Bouwman et al., 2013a (A. F. Bouwman, A. H. W. Beusen, J. Griffioen, J. W. Van Groenigen, M. M. Hefting, O. Oenema, P. J. T. M. Van Puijenbroek, S. Seitzinger, C. P. Slomp, E. Stehfest (2013). Global trends and uncertainties in terrestrial denitrification and N2O emissions. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), doi: http://dx.doi.org/10.1098/rstb.2013.0112.)
  18. Bouwman et al., 2013b - Erratum (L. Bouwman, K. K. Goldewijk, K. W. Van Der Hoek, A. H. W. Beusen, D. P. Van Vuuren, J. Willems, M. C. Rufino, E. Stehfest (2013). Erratum: Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period (Proceedings of the National Academy of Sciences of the United States of America (2013) DOI: 10.1073/pnas.1012878108). Proceedings of the National Academy of Sciences of the United States of America, 110(52), pp. 21196, doi: http://dx.doi.org/10.1073/pnas.1206191109.)
  19. Bouwman et al., 2013d (A. F. Bouwman, M. F. P. Bierkens, J. Griffioen, M. M. Hefting, J. J. Middelburg, H. Middelkoop, C. P. Slomp (2013). Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: Towards integration of ecological and biogeochemical models. Biogeosciences, 10(1), pp. 1-23, doi: http://dx.doi.org/10.5194/bg-10-1-2013.)
  20. Bouwman et al., 2013e (L. Bouwman, A. Beusen, P. M. Glibert, C. Overbeek, M. Pawlowski, J. Herrera, S. Mulsow, R. Yu, M. Zhou (2013). Mariculture: Significant and expanding cause of coastal nutrient enrichment. Environmental Research Letters, 8(4), doi: http://dx.doi.org/10.1088/1748-9326/8/4/044026.)
  21. Bouwman et al., 2017 (A. F. Bouwman, A. H. W. Beusen, L. Lassaletta, D. F. Van Apeldoorn, H. J. M. Van Grinsven, J. Zhang, M. K. Ittersum Van (2017). Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Scientific Reports, 7, doi: http://dx.doi.org/10.1038/srep40366.)
  22. Braspenning Radu et al., submitted (O. Braspenning Radu, M. van den Berg, Z. Klimont, S. Deetman, G. Janssens-Maenhout, M. Muntean, F. Dentener, D.P. van Vuuren (). Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios. Submitted, available on request.)
  23. CBD, 2013 (CBD (2013). Aichi biodiversity targets.URL: https://www.cbd.int/sp/targets/default.shtml)
  24. Cayuela et al., 2017 (M. L. Cayuela, E. Aguilera, A. Sanz-Cobena, D. C. Adams, D. Abalos, L. Barton, R. Ryals, W. L. Silver, M. A. Alfaro, V. A. Pappa, P. Smith, J. Garnier, G. Billen, L. Bouwman, A. Bondeau, L. Lassaletta (2017). Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems and Environment, 238, pp. 25-35, doi: http://dx.doi.org/10.1016/j.agee.2016.10.006.)
  25. Chuwah et al., 2013 (C. Chuwah, T. van Noije, D. P. van Vuuren, W. Hazeleger, A. Strunk, S. Deetman, A. M. Beltran, J. van Vliet (2013). Implications of alternative assumptions regarding future air pollution control in scenarios similar to the Representative Concentration Pathways. Atmospheric Environment, 79, pp. 787-801, doi: http://dx.doi.org/10.1016/j.atmosenv.2013.07.008.)
  26. Chuwah et al., 2016 (C. Chuwah, T. van Noije, D. P. van Vuuren, P. Le Sager, W. Hazeleger (2016). Global and regional climate impacts of future aerosol mitigation in an RCP6.0-like scenario in EC-Earth. Climatic Change, 134(1-2), pp. 1-14, doi: http://dx.doi.org/10.1007/s10584-015-1525-9.)
  27. Cox et al., 2018 (B. Cox, C.L. Mutel, C. Bauer, A. Mendoza Beltran, D.P. Van Vuuren (2018). Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles. Environmental Science and Technology, 52(8), pp. 4989-4995, doi: http://dx.doi.org/10.1021/acs.est.8b00261.)
  28. Creutzig et al., 2015 (F. Creutzig, P. Jochem, O. Y. Edelenbosch, L. Mattauch, D. P. Van Vuuren, D. McCollum, J. Minx (2015). Transport: A roadblock to climate change mitigation?. Science, 350(6263), pp. 911-912, doi: http://dx.doi.org/10.1126/science.aac8033.)
  29. Dagnachew et al., 2017 (A.G. Dagnachew, P.L. Lucas, A.F. Hof, D.E.H.J. Gernaat, H.-S. de Boer, D.P. van Vuuren (2017). The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach. Energy, 139, pp. 184-195, doi: http://dx.doi.org/10.1016/j.energy.2017.07.144.)
  30. Daioglou et al., 2015 (V. Daioglou, B. Wicke, A. P. C. Faaij, D. P. van Vuuren (2015). Competing uses of biomass for energy and chemicals: Implications for long-term global CO2 mitigation potential. GCB Bioenergy, 7(6), pp. 1321-1334, doi: http://dx.doi.org/10.1111/gcbb.12228.)
  31. Daioglou et al., 2016 (V. Daioglou, E. Stehfest, B. Wicke, A. Faaij, D. P. van Vuuren (2016). Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy, 8(2), pp. 456-470, doi: http://dx.doi.org/10.1111/gcbb.12285.
    Link to PBL-website: http://www.pbl.nl/en/publications/projections-of-the-availability-and-cost-of-residues-from-agriculture-and-forestry.
    )
  32. Daioglou et al., 2017 (V. Daioglou, J.C. Doelman, E. Stehfest, C. Müller, B. Wicke, A. Faaij, D.P. Van Vuuren (2017). Greenhouse gas emission curves for advanced biofuel supply chains. Nature Climate Change, 7(12), pp. 920-924, doi: http://dx.doi.org/10.1038/s41558-017-0006-8.)
  33. De Boer and van Vuuren, 2015 (H. S. de Boer, D. van Vuuren (2015). Representation of variable renewable energy sources in TIMER, an aggregated energy system simulation model. Energy Economics, doi: http://dx.doi.org/10.1016/j.eneco.2016.12.006.)
  34. De Cian et al., 2016 (E. De Cian, A. F. Hof, G. Marangoni, M. Tavoni, D. P. Van Vuuren (2016). Alleviating inequality in climate policy costs: An integrated perspective on mitigation, damage and adaptation. Environmental Research Letters, 11(7), doi: http://dx.doi.org/10.1088/1748-9326/11/7/074015.)
  35. De Vries et al., 2011 (W. De Vries, A. Leip, G. J. Reinds, J. Kros, J. P. Lesschen, A. F. Bouwman (2011). Comparison of land nitrogen budgets for European agriculture by various modeling approaches. Environmental Pollution, 159(11), pp. 3254-3268, doi: http://dx.doi.org/10.1016/j.envpol.2011.03.038.)
  36. Deetman et al., 2013 (S. Deetman, A. F. Hof, B. Pfluger, D. P. van Vuuren, B. Girod, B. J. van Ruijven (2013). Deep greenhouse gas emission reductions in Europe: Exploring different options. Energy Policy, 55, pp. 152-164, doi: http://dx.doi.org/10.1016/j.enpol.2012.11.047.)
  37. Deetman et al., 2015a (S. Deetman, A. F. Hof, B. Girod, D. P. van Vuuren (2015). Regional differences in mitigation strategies: an example for passenger transport. Regional Environmental Change, 15(6), pp. 987-995, doi: http://dx.doi.org/10.1007/s10113-014-0649-1.)
  38. Deetman et al., 2015b (S. Deetman, A. F. Hof, D. P. van Vuuren (2015). Deep CO2 emission reductions in a global bottom-up model approach. Climate Policy, 15(2), pp. 253-271, doi: http://dx.doi.org/10.1080/14693062.2014.912980.)
  39. Deetman et al., 2018 (S. Deetman, S. Pauliuk, D.P. Van Vuuren, E. Van Der Voet, A. Tukker (2018). Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances. Environmental Science and Technology, 52(8), pp. 4950-4959, doi: http://dx.doi.org/10.1021/acs.est.7b05549.)
  40. Den Elzen et al., 2013b (M. G. J. den Elzen, A. M. Beltran, A. F. Hof, B. van Ruijven, J. van Vliet (2013). Reduction targets and abatement costs of developing countries resulting from global and developed countries' reduction targets by 2050. Mitigation and Adaptation Strategies for Global Change, 18(4), pp. 491-512, doi: http://dx.doi.org/10.1007/s11027-012-9371-9.)
  41. Den Elzen et al., 2013c (M. G. J. den Elzen, J. G. J. Olivier, N. Höhne, G. Janssens-Maenhout (2013). Countries' contributions to climate change: Effect of accounting for all greenhouse gases, recent trends, basic needs and technological progress. Climatic Change, 121(2), pp. 397-412, doi: http://dx.doi.org/10.1007/s10584-013-0865-6.)
  42. Den Elzen et al., 2014 (M. Den Elzen, A. Hof, J. Van Vliet, P. Lucas (2014). A staged sectoral approach for climate mitigation, Global Climate Governance beyond 2012: Architecture, Agency and Adaptation, pp. 183-207, URL: 10.1017/CBO9781139107150.015.)
  43. Den Elzen et al., 2016b (M. den Elzen, H. Fekete, N. Höhne, A. Admiraal, N. Forsell, A. F. Hof, J. G. J. Olivier, M. Roelfsema, H. van Soest (2016). Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?. Energy Policy, 89, pp. 224-236, doi: http://dx.doi.org/10.1016/j.enpol.2015.11.030.)
  44. Den Elzen et al., 2019 (M. den Elzen, T. Kuramochi, N. Höhne, J. Cantzler, K. Esmeijer, H. Fekete, T. Fransen, K. Keramidas, M. Roelfsema, F. Sha, H. van Soest, T. Vandyck (2019). Are the G20 economies making enough progress to meet their NDC targets?. Energy Policy, pp. 238-250, doi: http://dx.doi.org/10.1016/j.enpol.2018.11.027.)
  45. Dermody et al., 2014 (B. J. Dermody, R. P. H. Van Beek, E. Meeks, K. Klein Goldewijk, W. Scheidel, Y. Van Der Velde, M. F. P. Bierkens, M. J. Wassen, S. C. Dekker (2014). A virtual water network of the Roman world. Hydrology and Earth System Sciences, 18(12), pp. 5025-5040, doi: http://dx.doi.org/10.5194/hess-18-5025-2014.)
  46. Dermody et al., 2018 (B.J. Dermody, M. Sivapalan, E. Stehfest, D.P. Van Vuuren, M.J. Wassen, M.F.P. Bierkens, S.C. Dekker (2018). A framework for modelling the complexities of food and water security under globalisation. Earth System Dynamics, 9(1), pp. 103-118, doi: http://dx.doi.org/10.5194/esd-9-103-2018.)
  47. Doelman et al., 2020 (Doelman J.C., Stehfest E., van Vuuren D.P., Tabeau A., Hof A.F., Braakhekke M.C., Gernaat D.E.H.J., van den Berg M., van Zeist W.-J., Daioglou V., van Meijl H., Lucas P.L. (2020). Afforestation for climate change mitigation: Potentials, risks and trade-offs. Global Change Biology, 26(3), pp. 1576-1591, doi: http://dx.doi.org/10.1111/gcb.14887.)
  48. Ebi et al., 2014b (K. L. Ebi, T. Kram, D. P. Van Vuuren, B. C. O'Neill, E. Kriegler (2014). A new toolkit for developing scenarios for climate change research and policy analysis. Environment, 56(2), pp. 6-16, doi: http://dx.doi.org/10.1080/00139157.2014.881692.)
  49. Edelenbosch et al. 2018 (O.Y. Edelenbosch, A. F. Hof, B. Nykvist, B. Girod & D. P. van Vuuren (2018). Transport electrification: the effect of recent battery cost reduction on future emission scenarios. Climatic Change, 151, pp. 95–108, doi: http://dx.doi.org/https://doi.org/10.1007/s10584-018-2250-y.)
  50. Edelenbosch et al., 2017 (O.Y. Edelenbosch, D.P. van Vuuren, C. Bertram, S. Carrara, J. Emmerling, H. Daly, A. Kitous, D.L. McCollum, N. Saadi Failali (2017). Transport fuel demand responses to fuel price and income projections: Comparison of integrated assessment models. Transportation Research Part D: Transport and Environment, 55, pp. 310-321, doi: http://dx.doi.org/10.1016/j.trd.2017.03.005.)
  51. Edelenbosch et al., 2018a (O.Y. Edelenbosch, D.L. McCollum, H. Pettifor, C. Wilson, D.P. Van Vuuren (2018). Interactions between social learning and technological learning in electric vehicle futures. Environmental Research Letters, 13(12), doi: http://dx.doi.org/10.1088/1748-9326/aae948.)
  52. Edelenbosch et al., 2018b (O.Y. Edelenbosch, A.F. Hof, B. Nykvist, B. Girod, D.P. van Vuuren (2018). Transport electrification: the effect of recent battery cost reduction on future emission scenarios. Climatic Change, 151(2), pp. 95-108, doi: http://dx.doi.org/10.1007/s10584-018-2250-y.)
  53. Eitelberg et al., 2016 (D. A. Eitelberg, J. van Vliet, J. C. Doelman, E. Stehfest, P. H. Verburg (2016). Demand for biodiversity protection and carbon storage as drivers of global land change scenarios. Global Environmental Change, 40, pp. 101-111, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.06.014.)
  54. Ellis et al., 2013 (E. C. Ellis, J. O. Kaplan, D. Q. Fuller, S. Vavrus, K. K. Goldewijk, P. H. Verburg (2013). Used planet: A global history. Proceedings of the National Academy of Sciences of the United States of America, 110(20), pp. 7978-7985, doi: http://dx.doi.org/10.1073/pnas.1217241110.)
  55. Engström et al., 2016 (K. Engström, S. Olin, M. D. A. Rounsevell, S. Brogaard, D. P. Van Vuuren, P. Alexander, D. Murray-Rust, A. Arneth (2016). Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth System Dynamics, 7(4), pp. 893-915, doi: http://dx.doi.org/10.5194/esd-7-893-2016.)
  56. Eom et al., 2015 (J. Eom, J. Edmonds, V. Krey, N. Johnson, T. Longden, G. Luderer, K. Riahi, D. P. Van Vuuren (2015). The impact of near-term climate policy choices on technology and emission transition pathways. Technological Forecasting and Social Change, 90(PA), pp. 73-88, doi: http://dx.doi.org/10.1016/j.techfore.2013.09.017.)
  57. FAO, 2011b (FAO (2011). FAOSTAT database collections.Access date: 2011-03-01.URL: http://faostat.fao.org/)
  58. FAO, 2018 (Food and Agriculture Organization of the United Nations (2018). The future of food and agriculture. Alternative pathways to 2050, FAO, FAO, Rome(URL: http://www.fao.org/3/I8429EN/i8429en.pdf).)
  59. Florke et al., 2013 (Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., Alcamo, J. Global Environmental Change (2013). Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study (2013). Global Environmental Change, 23, pp. 144–156, doi: http://dx.doi.org/https://doi.org/10.1016/j.gloenvcha.2012.10.018.)
  60. Forsell et al., 2016 (N. Forsell, O. Turkovska, M. Gusti, M. Obersteiner, M. Den Elzen, P. Havlik (2016). Assessing the INDCs' land use, land use change, and forest emission projections. Carbon Balance and Management, 11(1), doi: http://dx.doi.org/10.1186/s13021-016-0068-3.)
  61. Fowler et al., 2013 (D. Fowler, M. Coyle, U. Skiba, M. A. Sutton, J. N. Cape, S. Reis, L. J. Sheppard, A. Jenkins, B. Grizzetti, J. N. Galloway, P. Vitousek, A. Leach, A. F. Bouwman, K. Butterbach-Bahl, F. Dentener, D. Stevenson, M. Amann, M. Voss (2013). The global nitrogen cycle in the Twentyfirst century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), doi: http://dx.doi.org/10.1098/rstb.2013.0164.)
  62. Frank et al., 2018 (Stefan Frank, Petr Havlík, Elke Stehfest, Hans van Meijl, Peter Witzke, Ignacio Pérez-Domínguez, Michiel van Dijk, Jonathan C. Doelman, Thomas Fellmann, Jason F. L. Koopman, Andrzej Tabeau & Hugo Valin (2018). Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target.. Nature Climate Change, 9(1), pp. 66-72, doi: http://dx.doi.org/https://doi.org/10.1038/s41558-018-0358-8.
    Link to PBL-website: https://www.pbl.nl/en/publications/agricultural-non-co2-emission-reduction-potential-in-the-context-of-the-1-5-c-target.
    )
  63. Friedlingstein et al., 2014 (P. Friedlingstein, R. M. Andrew, J. Rogelj, G. P. Peters, J. G. Canadell, R. Knutti, G. Luderer, M. R. Raupach, M. Schaeffer, D. P. Van Vuuren, C. Le Quéré (2014). Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geoscience, 7(10), pp. 709-715, doi: http://dx.doi.org/10.1038/NGEO2248.)
  64. Frieler et al., 2015 (K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, H. J. Schellnhuber (2015). A framework for the cross-sectoral integration of multi-model impact projections: Land use decisions under climate impacts uncertainties. Earth System Dynamics, 6(2), pp. 447-460, doi: http://dx.doi.org/10.5194/esd-6-447-2015.)
  65. Fuss et al., 2016 (S. Fuss, C. D. Jones, F. Kraxner, G. P. Peters, P. Smith, M. Tavoni, D. P. Van Vuuren, J. G. Canadell, R. B. Jackson, J. Milne, J. R. Moreira, N. Nakicenovic, A. Sharifi, Y. Yamagata (2016). Research priorities for negative emissions. Environmental Research Letters, 11(11), doi: http://dx.doi.org/10.1088/1748-9326/11/11/115007.)
  66. Geels et al., 2016 (F. W. Geels, F. Berkhout, D. P. Van Vuuren (2016). Bridging analytical approaches for low-carbon transitions. Nature Climate Change, 6(6), pp. 576-583, doi: http://dx.doi.org/10.1038/nclimate2980.)
  67. Gernaat 2019 (Gernaat, DEHJ (2019). Phd Thesis: The role of renewable energy in long-term energy and climate scenarios.)
  68. Gernaat et al., 2015 (D. E. H. J. Gernaat, K. Calvin, P. L. Lucas, G. Luderer, S. A. C. Otto, S. Rao, J. Strefler, D. P. van Vuuren (2015). Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Global Environmental Change, 33, pp. 142-153, doi: http://dx.doi.org/10.1016/j.gloenvcha.2015.04.010.
    Link to PBL-website: http://www.pbl.nl/en/publications/understanding-the-contribution-of-non-carbon-dioxide-gases-in-deep-mitigation-scenarios.
    )
  69. Gernaat et al., 2020 (David E.H.J.Gernaat, Harmen-Sytzede Boer, Louise C.Dammeier, Detlef P.van Vuuren (2020). The role of residential rooftop photovoltaic in long-term energy and climate scenarios. Applied Energy, 279, doi: http://dx.doi.org/https://doi.org/10.1016/j.apenergy.2020.115705.)
  70. Gidden et al., 2018 (M.J. Gidden, S. Fujimori, M. van den Berg, D. Klein, S.J. Smith, D.P. van Vuuren, K. Riahi (2018). A methodology and implementation of automated emissions harmonization for use in Integrated Assessment Models. Environmental Modelling and Software, 105, pp. 187-200, doi: http://dx.doi.org/10.1016/j.envsoft.2018.04.002.)
  71. Girod et al., 2013 (B. Girod, D. P. van Vuuren, B. de Vries (2013). Influence of travel behavior on global CO2 emissions. Transportation Research Part A: Policy and Practice, 50, pp. 183-197, doi: http://dx.doi.org/10.1016/j.tra.2013.01.046.)
  72. Girod et al., 2013b (B. Girod, D. P. van Vuuren, M. Grahn, A. Kitous, S. H. Kim, P. Kyle (2013). Climate impact of transportation A model comparison. Climatic Change, 118(3-4), pp. 595-608, doi: http://dx.doi.org/10.1007/s10584-012-0663-6.)
  73. Girod et al., 2013c (B. Girod, D. P. Van Vuuren, E. G. Hertwich (2013). Global climate targets and future consumption level: An evaluation of the required GHG intensity. Environmental Research Letters, 8(1), doi: http://dx.doi.org/10.1088/1748-9326/8/l/014016.)
  74. Girod et al., 2013c - Erratum (B. Girod, D. P. Van Vuuren, E. G. Hertwich (2013). Erratum: Global climate targets and future consumption level: An evaluation of the required GHG intensity (Environmental Research Letters (2013) 8 (014016)). Environmental Research Letters, 8(2), doi: http://dx.doi.org/10.1088/1748-9326/8/2/029501.)
  75. Girod et al., 2014d (B. Girod, D. P. van Vuuren, E. G. Hertwich (2014). Climate policy through changing consumption choices: Options and obstacles for reducing greenhouse gas emissions. Global Environmental Change, 25(1), pp. 5-15, doi: http://dx.doi.org/10.1016/j.gloenvcha.2014.01.004.)
  76. Glibert et al., 2014a (P. M. Glibert, J. Icarus Allen, Y. Artioli, A. Beusen, L. Bouwman, J. Harle, R. Holmes, J. Holt (2014). Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: Projections based on model analysis. Global Change Biology, 20(12), pp. 3845-3858, doi: http://dx.doi.org/10.1111/gcb.12662.)
  77. Glibert et al., 2014b (P. M. Glibert, R. Maranger, D. J. Sobota, L. Bouwman (2014). The Haber Bosch-harmful algal bloom (HB-HAB) link. Environmental Research Letters, 9(10), doi: http://dx.doi.org/10.1088/1748-9326/9/10/105001.)
  78. Gottschalk et al., 2012 (P. Gottschalk, J. U. Smith, M. Wattenbach, J. Bellarby, E. Stehfest, N. Arnell, T. J. Osborn, C. Jones, P. Smith (2012). How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosciences, 9(8), pp. 3151-3171, doi: http://dx.doi.org/10.5194/bg-9-3151-2012.)
  79. Granier et al., 2011 (C. Granier, B. Bessagnet, T. Bond, A. D'Angiola, H. D. van der Gon, G. J. Frost, A. Heil, J. W. Kaiser, S. Kinne, Z. Klimont, S. Kloster, J. F. Lamarque, C. Liousse, T. Masui, F. Meleux, A. Mieville, T. Ohara, J. C. Raut, K. Riahi, M. G. Schultz, S. J. Smith, A. Thompson, J. van Aardenne, G. R. van der Werf, D. P. van Vuuren (2011). Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period. Climatic Change, 109(1), pp. 163-190, doi: http://dx.doi.org/10.1007/s10584-011-0154-1.)
  80. Grassi et al., 2012 (G. Grassi, M. G. J. den Elzen, A. F. Hof, R. Pilli, S. Federici (2012). The role of the land use, land use change and forestry sector in achieving Annex I reduction pledges. Climatic Change, 115(3-4), pp. 873-881, doi: http://dx.doi.org/10.1007/s10584-012-0584-4.)
  81. Grassi et al., 2017 (G. Grassi, J. House, F. Dentener, S. Federici, M. Den Elzen, J. Penman (2017). The key role of forests in meeting climate targets requires science for credible mitigation. Nature Climate Change, 7(3), pp. 220-226, doi: http://dx.doi.org/10.1038/nclimate3227.)
  82. Hallegatte et al., 2016 (S. Hallegatte, J. Rogelj, M. Allen, L. Clarke, O. Edenhofer, C. B. Field, P. Friedlingstein, L. Van Kesteren, R. Knutti, K. J. Mach, M. Mastrandrea, A. Michel, J. Minx, M. Oppenheimer, G. K. Plattner, K. Riahi, M. Schaeffer, T. F. Stocker, D. P. Van Vuuren (2016). Mapping the climate change challenge. Nature Climate Change, 6(7), pp. 663-668, doi: http://dx.doi.org/10.1038/nclimate3057.)
  83. Harmsen et al., 2015 (M. J. H. M. Harmsen, D. P. van Vuuren, M. van den Berg, A. F. Hof, C. Hope, V. Krey, J. F. Lamarque, A. Marcucci, D. T. Shindell, M. Schaeffer (2015). How well do integrated assessment models represent non-CO2 radiative forcing?. Climatic Change, 133(4), pp. 565-582, doi: http://dx.doi.org/10.1007/s10584-015-1485-0.)
  84. Harper et al., 2018 (A.B. Harper, T. Powell, P.M. Cox, J. House, C. Huntingford, T.M. Lenton, S. Sitch, E. Burke, S.E. Chadburn, W.J. Collins, E. Comyn-Platt, V. Daioglou, J.C. Doelman, G. Hayman, E. Robertson, D. van Vuuren, A. Wiltshire, C.P. Webber, A. Bastos, L. Boysen, P. Ciais, N. Devaraju, A.K. Jain, A. Krause, B. Poulter, S. Shu (2018). Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 9(1), doi: http://dx.doi.org/10.1038/s41467-018-05340-z.)
  85. Harrison et al., 2012 (J. A. Harrison, P. J. Frings, A. H. W. Beusen, D. J. Conley, M. L. McCrackin (2012). Global importance, patterns, and controls of dissolved silica retention in lakes and reservoirs. Global Biogeochemical Cycles, 26(2), doi: http://dx.doi.org/10.1029/2011GB004228.)
  86. Hartmann et al., 2014 (Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., and West, A.J. (2014). Global chemical weathering and associated p-release — the role of lithology, temperature and soil properties. Chemical Geology, 363, pp. 145-163, doi: http://dx.doi.org/10.1016/j.chemgeo.2013.10.025.)
  87. Hasegawa et al., 2018 (T. Hasegawa, S. Fujimori, P. Havlík, H. Valin, B.L. Bodirsky, J.C. Doelman, T. Fellmann, P. Kyle, J.F.L. Koopman, H. Lotze-Campen, D. Mason-D’Croz, Y. Ochi, I. Pérez Domínguez, E. Stehfest, T.B. Sulser, A. Tabeau, K. Takahashi, J. Takakura, H. van Meijl, W.-J. van Zeist, K. Wiebe, P. Witzke (2018). Risk of increased food insecurity under stringent global climate change mitigation policy. Nature Climate Change, 8(8), pp. 699-703, doi: http://dx.doi.org/10.1038/s41558-018-0230-x.)
  88. Herreras Martínez et al., 2015 (S. Herreras Martínez, A. Koberle, P. Rochedo, R. Schaeffer, A. Lucena, A. Szklo, S. Ashina, D. P. van Vuuren (2015). Possible energy futures for Brazil and Latin America in conservative and stringent mitigation pathways up to 2050. Technological Forecasting and Social Change, 98, pp. 186-210, doi: http://dx.doi.org/10.1016/j.techfore.2015.05.006.)
  89. Herrero et al., 2016 (M. Herrero, B. Henderson, P. Havlík, P. K. Thornton, R. T. Conant, P. Smith, S. Wirsenius, A. N. Hristov, P. Gerber, M. Gill, K. Butterbach-Bahl, H. Valin, T. Garnett, E. Stehfest (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6(5), pp. 452-461, doi: http://dx.doi.org/10.1038/nclimate2925.)
  90. Hinkel et al., 2013 (J. Hinkel, D. P. van Vuuren, R. J. Nicholls, R. J. T. Klein (2013). The effects of adaptation and mitigation on coastal flood impacts during the 21st century. An application of the DIVA and IMAGE models. Climatic Change, 117(4), pp. 783-794, doi: http://dx.doi.org/10.1007/s10584-012-0564-8.)
  91. Hirsch et al., 2018 (A.L. Hirsch, B.P. Guillod, S.I. Seneviratne, U. Beyerle, L.R. Boysen, V. Brovkin, E.L. Davin, J.C. Doelman, H. Kim, D.M. Mitchell, T. Nitta, H. Shiogama, S. Sparrow, E. Stehfest, D.P. van Vuuren, S. Wilson (2018). Biogeophysical Impacts of Land-Use Change on Climate Extremes in Low-Emission Scenarios: Results From HAPPI-Land. Earth's Future, 6(3), pp. 396-409, doi: http://dx.doi.org/10.1002/2017EF000744.)
  92. Hof et al., 2012b (A. F. Hof, C. W. Hope, J. Lowe, M. D. Mastrandrea, M. Meinshausen, D. P. van Vuuren (2012). The benefits of climate change mitigation in integrated assessment models: The role of the carbon cycle and climate component. Climatic Change, 113(3-4), pp. 897-917, doi: http://dx.doi.org/10.1007/s10584-011-0363-7.)
  93. Hof et al., 2014 (A. F. Hof, A. Kumar, S. Deetman, S. Ghosh, D. P. van Vuuren (2014). Disentangling the ranges: climate policy scenarios for China and India. Regional Environmental Change, 15(6), pp. 1025-1033, doi: http://dx.doi.org/10.1007/s10113-014-0721-x.)
  94. Hof et al., 2014b (A. Hof, K. De Bruin, R. Dellink, M. Den Elzen, D. Van Vuuren (2014). Costs, benefits and interlinkages between adaptation and mitigation, Global Climate Governance beyond 2012: Architecture, Agency and Adaptation, pp. 235-254, URL: 10.1017/CBO9781139107150.019.)
  95. Hof et al., 2014c (A. Hof, M. D. Elzen, D. Van Vuuren (2014). Environmental effectiveness and economic consequences of fragmented versus universal regimes: What can we learn from model studies?, Global Climate Governance beyond 2012: Architecture, Agency and Adaptation, pp. 35-59, URL: 10.1017/CBO9781139107150.006.)
  96. Hof, 2015 (A. F. Hof (2015). Welfare impacts of climate change. Nature Climate Change, 5(2), pp. 99-100, doi: http://dx.doi.org/10.1038/nclimate2506.)
  97. Hofstra et al., 2013 (N. Hofstra, A. F. Bouwman, A. H. W. Beusen, G. J. Medema (2013). Exploring global Cryptosporidium emissions to surface water. Science of the Total Environment, 442, pp. 10-19, doi: http://dx.doi.org/10.1016/j.scitotenv.2012.10.013.)
  98. Hohne et al., 2012 (N. Höhne, C. Taylor, R. Elias, M. Den Elzen, K. Riahi, C. Chen, J. Rogelj, G. Grassi, F. Wagner, K. Levin, E. Massetti, Z. Xiusheng (2012). National GHG emissions reduction pledges and 2°C: Comparison of studies. Climate Policy, 12(3), pp. 356-377, doi: http://dx.doi.org/10.1080/14693062.2011.637818.)
  99. Huntingford et al., 2015 (C. Huntingford, J. A. Lowe, N. Howarth, N. H. A. Bowerman, L. K. Gohar, A. Otto, D. S. Lee, S. M. Smith, M. G. J. den Elzen, D. P. van Vuuren, R. J. Millar, M. R. Allen (2015). The implications of carbon dioxide and methane exchange for the heavy mitigation RCP2.6 scenario under two metrics. Environmental Science and Policy, 51, pp. 77-87, doi: http://dx.doi.org/10.1016/j.envsci.2015.03.013.)
  100. Häyhä et al., 2016 (T. Häyhä, P. L. Lucas, D. P. van Vuuren, S. E. Cornell, H. Hoff (2016). From Planetary Boundaries to national fair shares of the global safe operating space — How can the scales be bridged?. Global Environmental Change, 40, pp. 60-72, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.06.008.)
  101. Höhne et al., 2014 (N. Höhne, M. den Elzen, D. Escalante (2014). Regional GHG reduction targets based on effort sharing: a comparison of studies. Climate Policy, 14(1), pp. 122-147, doi: http://dx.doi.org/10.1080/14693062.2014.849452.)
  102. Höhne et al., 2018 (N. Höhne, H. Fekete, M.G.J. den Elzen, A.F. Hof, T. Kuramochi (2018). Assessing the ambition of post-2020 climate targets: a comprehensive framework. Climate Policy, 18(4), pp. 425-441, doi: http://dx.doi.org/10.1080/14693062.2017.1294046.)
  103. IEA, 2017 (International Energy Agency (2017). World Energy Balances (Edition 2017)(URL: https://doi.org/10.1787/9ddec1c1-en).)
  104. IPCC, 2014 (Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). (2014). 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, IPCC, IPCC, Switzerland(URL: https://www.ipcc.ch/publication/2013-supplement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories-wetlands/).)
  105. Janssen et al., 2015 (A. B. G. Janssen, G. B. Arhonditsis, A. Beusen, K. Bolding, L. Bruce, J. Bruggeman, R. M. Couture, A. S. Downing, J. Alex Elliott, M. A. Frassl, G. Gal, D. J. Gerla, M. R. Hipsey, F. Hu, S. C. Ives, J. H. Janse, E. Jeppesen, K. D. Jöhnk, D. Kneis, X. Kong, J. J. Kuiper, M. K. Lehmann, C. Lemmen, D. Özkundakci, T. Petzoldt, K. Rinke, B. J. Robson, R. Sachse, S. A. Schep, M. Schmid, H. Scholten, S. Teurlincx, D. Trolle, T. A. Troost, A. A. Van Dam, L. P. A. Van Gerven, M. Weijerman, S. A. Wells, W. M. Mooij (2015). Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective. Aquatic Ecology, 49(4), pp. 513-548, doi: http://dx.doi.org/10.1007/s10452-015-9544-1.)
  106. Jewell et al., 2018 (J. Jewell, D. McCollum, J. Emmerling, C. Bertram, D.E.H.J. Gernaat, V. Krey, L. Paroussos, L. Berger, K. Fragkiadakis, I. Keppo, N. Saadi, M. Tavoni, D. Van Vuuren, V. Vinichenko, K. Riahi (2018). Limited emission reductions from fuel subsidy removal except in energy-exporting regions. Nature, 554(7691), pp. 229-233, doi: http://dx.doi.org/10.1038/nature25467.)
  107. Johansson et al., 2014 (D. J. A. Johansson, P. L. Lucas, M. Weitzel, E. O. Ahlgren, A. B. Bazaz, W. Chen, M. G. J. den Elzen, J. Ghosh, M. Grahn, Q. M. Liang, S. Peterson, B. K. Pradhan, B. J. van Ruijven, P. R. Shukla, D. P. van Vuuren, Y. M. Wei (2014). Multi-model comparison of the economic and energy implications for China and India in an international climate regime. Mitigation and Adaptation Strategies for Global Change, 20(8), pp. 1335-1359, doi: http://dx.doi.org/10.1007/s11027-014-9549-4.)
  108. Johns et al., 2011 (T. C. Johns, J. F. Royer, I. Höschel, H. Huebener, E. Roeckner, E. Manzini, W. May, J. L. Dufresne, O. H. Otterå, D. P. van Vuuren, D. Salas y Melia, M. A. Giorgetta, S. Denvil, S. Yang, P. G. Fogli, J. Körper, J. F. Tjiputra, E. Stehfest, C. D. Hewitt (2011). Climate change under aggressive mitigation: The ENSEMBLES multi-model experiment. Climate Dynamics, 37(9-10), pp. 1975-2003, doi: http://dx.doi.org/10.1007/s00382-011-1005-5.)
  109. Jones et al., 2016 (C. D. Jones, P. Ciais, S. J. Davis, P. Friedlingstein, T. Gasser, G. P. Peters, J. Rogelj, D. P. Van Vuuren, J. G. Canadell, A. Cowie, R. B. Jackson, M. Jonas, E. Kriegler, E. Littleton, J. A. Lowe, J. Milne, G. Shrestha, P. Smith, A. Torvanger, A. Wiltshire (2016). Simulating the Earth system response to negative emissions. Environmental Research Letters, 11(9), doi: http://dx.doi.org/10.1088/1748-9326/11/9/095012.)
  110. Jägermeyr et al., 2017 (Jonas Jägermeyr, Amandine Pastor, Hester Biemans & Dieter Gerten (2017). Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nature Communications, 8, doi: http://dx.doi.org/https://doi.org/10.1038/ncomms15900.)
  111. Kaplan et al., 2011 (J. O. Kaplan, K. M. Krumhardt, E. C. Ellis, W. F. Ruddiman, C. Lemmen, K. K. Goldewijk (2011). Holocene carbon emissions as a result of anthropogenic land cover change. Holocene, 21(5), pp. 775-791, doi: http://dx.doi.org/10.1177/0959683610386983.)
  112. Kermeli et al., 2019 (K. Kermeli, O.Y. Edelenbosch, W. Crijns-Graus, B.J. van Ruijven, S. Mima, D.P. van Vuuren, E. Worrell (2019). The scope for better industry representation in long-term energy models: Modeling the cement industry. Applied Energy, 240, pp. 964-985, doi: http://dx.doi.org/10.1016/j.apenergy.2019.01.252.)
  113. Keuskamp et al., 2012 (J. A. Keuskamp, G. Van Drecht, A. F. Bouwman (2012). European-scale modelling of groundwater denitrification and associated N 2O production. Environmental Pollution, 165, pp. 67-76, doi: http://dx.doi.org/10.1016/j.envpol.2012.02.008.)
  114. Kim et al., 2018 (H. Kim, I.M.D. Rosa, R. Alkemade, P. Leadley, G. Hurtt, A. Popp, D.P. Van Vuuren, P. Anthoni, A. Arneth, D. Baisero, E. Caton, R. Chaplin-Kramer, L. Chini, A. De Palma, F. Di Fulvio, M. Di Marco, F. Espinoza, S. Ferrier, S. Fujimori, R.E. Gonzalez, M. Gueguen, C. Guerra, M. Harfoot, T.D. Harwood, T. Hasegawa, V. Haverd, P. Havlík, S. Hellweg, S.L.L. Hill, A. Hirata, A.J. Hoskins, J.H. Janse, W. Jetz, J.A. Johnson, A. Krause, D. Leclère, I.S. Martins, T. Matsui, C. Merow, M. Obersteiner, H. Ohashi, B. Poulter, A. Purvis, B. Quesada, C. Rondinini, A.M. Schipper, R. Sharp, K. Takahashi, W. Thuiller, N. Titeux, P. Visconti, C. Ware (2018). A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 11(11), pp. 4537-4562, doi: http://dx.doi.org/10.5194/gmd-11-4537-2018.)
  115. Klostermann et al., 2015 (J. Klostermann, K. van de Sandt, M. Harley, M. Hildén, T. Leiter, J. van Minnen, N. Pieterse, L. van Bree (2015). Towards a framework to assess, compare and develop monitoring and evaluation of climate change adaptation in Europe. Mitigation and Adaptation Strategies for Global Change, doi: http://dx.doi.org/10.1007/s11027-015-9678-4.)
  116. Koelbl et al., 2013 (B. S. Koelbl, M. Van Den Broek, B. Van Ruijven, D. P. Van Vuuren, A. P. C. Faaij (2013). A sensitivity analysis of the global deployment of CCS to the cost of storage and storage capacity estimates. Paper presented at the Energy Procedia, 37, pp. 7537-7544, doi: http://dx.doi.org/10.1016/j.egypro.2013.06.697.)
  117. Koelbl et al., 2014a (B. S. Koelbl, M. A. van den Broek, A. P. C. Faaij, D. P. van Vuuren (2014). Uncertainty in Carbon Capture and Storage (CCS) deployment projections: A cross-model comparison exercise. Climatic Change, 123(3-4), pp. 461-476, doi: http://dx.doi.org/10.1007/s10584-013-1050-7.)
  118. Koelbl et al., 2014b (B. S. Koelbl, M. A. van den Broek, B. J. van Ruijven, A. P. C. Faaij, D. P. van Vuuren (2014). Uncertainty in the deployment of Carbon Capture and Storage (CCS): A sensitivity analysis to techno-economic parameter uncertainty. International Journal of Greenhouse Gas Control, 27, pp. 81-102, doi: http://dx.doi.org/10.1016/j.ijggc.2014.04.024.)
  119. Koelbl et al., 2015 (B. S. Koelbl, R. Wood, M. A. van den Broek, M. W. J. L. Sanders, A. P. C. Faaij, D. P. van Vuuren (2015). Socio-economic impacts of future electricity generation scenarios in Europe: Potential costs and benefits of using CO2 Capture and Storage (CCS). International Journal of Greenhouse Gas Control, 42, pp. 471-484, doi: http://dx.doi.org/10.1016/j.ijggc.2015.08.010.)
  120. Koelbl et al., 2016 (B. S. Koelbl, M. A. van den Broek, H. C. Wilting, M. W. J. L. Sanders, T. Bulavskaya, R. Wood, A. P. C. Faaij, D. P. van Vuuren (2016). Socio-economic impacts of low-carbon power generation portfolios: Strategies with and without CCS for the Netherlands. Applied Energy, 183, pp. 257-277, doi: http://dx.doi.org/10.1016/j.apenergy.2016.08.068.)
  121. Kok et al., 2016 (M. Kok, M. Lüdeke, P. Lucas, T. Sterzel, C. Walther, P. Janssen, D. Sietz, I. de Soysa (2016). A new method for analysing socio-ecological patterns of vulnerability. Regional Environmental Change, 16(1), pp. 229-243, doi: http://dx.doi.org/10.1007/s10113-014-0746-1.)
  122. Kok et al., 2018 (M.T.J. Kok, R. Alkemade, M. Bakkenes, M. van Eerdt, J. Janse, M. Mandryk, T. Kram, T. Lazarova, J. Meijer, M. van Oorschot, H. Westhoek, R. van der Zagt, M. van der Berg, S. van der Esch, A.-G. Prins, D.P. van Vuuren (2018). Pathways for agriculture and forestry to contribute to terrestrial biodiversity conservation: A global scenario-study. Biological Conservation, 221, pp. 137-150, doi: http://dx.doi.org/10.1016/j.biocon.2018.03.003.)
  123. Krabbe et al., 2015 (O. Krabbe, G. Linthorst, K. Blok, W. Crijns-Graus, D. P. Van Vuuren, N. Höhne, P. Faria, N. Aden, A. C. Pineda (2015). Aligning corporate greenhouse-gas emissions targets with climate goals. Nature Climate Change, 5(12), pp. 1057-1060, doi: http://dx.doi.org/10.1038/nclimate2770.)
  124. Kram and Stehfest, 2011 (T. Kram, E. Stehfest (2011). Integrated modeling of global environmental change (IMAGE), Land Use, Climate Change and Biodiversity Modeling: Perspectives and Applications, pp. 104-118, URL: 10.4018/978-1-60960-619-0.ch005.)
  125. Kram and Stehfest, 2012 (T.Kram, E.E. Stehfest (2012). The IMAGE Model Suite used for the OECD Environmental Outlook to 2050, PBL. Link to PBL-website: http://www.pbl.nl/en/publications/2012/the-image-model-suite-used-for-the-oecd-environmental-outlook-to-2050.)
  126. Krause et al., 2017 (A. Krause, T.A.M. Pughl, A.D. Bayer, J.C. Doelman, F. Humpenöder, P. Anthoni, S. Olin, B.L. Bodirsky, A. Popp, E. Stehfest, A. Arneth (2017). Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators. Biogeosciences, 14(21), pp. 4829-4850, doi: http://dx.doi.org/10.5194/bg-14-4829-2017.)
  127. Krause et al., 2018 (A. Krause, T.A.M. Pugh, A.D. Bayer, W. Li, F. Leung, A. Bondeau, J.C. Doelman, F. Humpenöder, P. Anthoni, B.L. Bodirsky, P. Ciais, C. Müller, G. Murray-Tortarolo, S. Olin, A. Popp, S. Sitch, E. Stehfest, A. Arneth (2018). Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts. Global Change Biology, 24(7), pp. 3025-3038, doi: http://dx.doi.org/10.1111/gcb.14144.)
  128. Kriegler et al., 2012 (E. Kriegler, B. C. O'Neill, S. Hallegatte, T. Kram, R. J. Lempert, R. H. Moss, T. Wilbanks (2012). The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Global Environmental Change, 22(4), pp. 807-822, doi: http://dx.doi.org/10.1016/j.gloenvcha.2012.05.005.)
  129. Kriegler et al., 2014a (E. Kriegler, J. Edmonds, S. Hallegatte, K. L. Ebi, T. Kram, K. Riahi, H. Winkler, D. P. van Vuuren (2014). A new scenario framework for climate change research: The concept of shared climate policy assumptions. Climatic Change, 122(3), pp. 401-414, doi: http://dx.doi.org/10.1007/s10584-013-0971-5.)
  130. Kriegler et al., 2014b (E. Kriegler, J. P. Weyant, G. J. Blanford, V. Krey, L. Clarke, J. Edmonds, A. Fawcett, G. Luderer, K. Riahi, R. Richels, S. K. Rose, M. Tavoni, D. P. van Vuuren (2014). The role of technology for achieving climate policy objectives: Overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 123(3-4), pp. 353-367, doi: http://dx.doi.org/10.1007/s10584-013-0953-7.)
  131. Kriegler et al., 2015a (E. Kriegler, N. Petermann, V. Krey, V. J. Schwanitz, G. Luderer, S. Ashina, V. Bosetti, J. Eom, A. Kitous, A. Méjean, L. Paroussos, F. Sano, H. Turton, C. Wilson, D. P. Van Vuuren (2015). Diagnostic indicators for integrated assessment models of climate policy. Technological Forecasting and Social Change, 90(PA), pp. 45-61, doi: http://dx.doi.org/10.1016/j.techfore.2013.09.020.)
  132. Kriegler et al., 2015b (E. Kriegler, K. Riahi, N. Bauer, V. J. Schwanitz, N. Petermann, V. Bosetti, A. Marcucci, S. Otto, L. Paroussos, S. Rao, T. Arroyo Currás, S. Ashina, J. Bollen, J. Eom, M. Hamdi-Cherif, T. Longden, A. Kitous, A. Méjean, F. Sano, M. Schaeffer, K. Wada, P. Capros, D. P. van Vuuren, O. Edenhofer (2015). Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy. Technological Forecasting and Social Change, 90(PA), pp. 24-44, doi: http://dx.doi.org/10.1016/j.techfore.2013.09.021.)
  133. Kriegler et al., 2015c (E. Kriegler, K. Riahi, N. Bauer, V. J. Schwanitz, N. Petermann, V. Bosetti, A. Marcucci, S. Otto, L. Paroussos, S. Rao-Skirbekk, T. A. Currás, S. Ashina, J. Bollen, J. Eom, M. Hamdi-Cherif, T. Longden, A. Kitous, A. Méjean, F. Sano, M. Schaeffer, K. Wada, P. Capros, D. P. van Vuuren, O. Edenhofer, C. Bertram, R. Bibas, J. Edmonds, N. Johnson, V. Krey, G. Luderer, D. McCollum, K. Jiang (2015). A short note on integrated assessment modeling approaches: Rejoinder to the review of "Making or breaking climate targets - The AMPERE study on staged accession scenarios for climate policy". Technological Forecasting and Social Change, 99, pp. 273-276, doi: http://dx.doi.org/10.1016/j.techfore.2015.07.011.)
  134. Kriegler et al., 2015d (E. Kriegler, K. Riahi, V. Bosetti, P. Capros, N. Petermann, D. P. van Vuuren, J. P. Weyant, O. Edenhofer (2015). Introduction to the AMPERE model intercomparison studies on the economics of climate stabilization. Technological Forecasting and Social Change, 90(PA), pp. 1-7, doi: http://dx.doi.org/10.1016/j.techfore.2014.10.012.)
  135. Kriegler et al., 2018 (E. Kriegler, G. Luderer, N. Bauer, L. Baumstark, S. Fujimori, A. Popp, J. Rogelj, J. Strefer, D.P. Van Vuuren (2018). Pathways limiting warming to 1.5°C: A tale of turning around in no time?. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), doi: http://dx.doi.org/10.1098/rsta.2016.0457.)
  136. Kroeze and Bouwman, 2011 (C. Kroeze, L. Bouwman (2011). The role of nitrogen in climate change. Current Opinion in Environmental Sustainability, 3(5), pp. 279-280, doi: http://dx.doi.org/10.1016/j.cosust.2011.08.015.)
  137. Kroeze et al., 2012 (C. Kroeze, L. Bouwman, S. Seitzinger (2012). Modeling global nutrient export from watersheds. Current Opinion in Environmental Sustainability, 4(2), pp. 195-202, doi: http://dx.doi.org/10.1016/j.cosust.2012.01.009.)
  138. Lamarque et al., 2011 (J. F. Lamarque, G. P. Kyle, M. Meinshausen, K. Riahi, S. J. Smith, D. P. van Vuuren, A. J. Conley, F. Vitt (2011). Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change, 109(1), pp. 191-212, doi: http://dx.doi.org/10.1007/s10584-011-0155-0.)
  139. Lassaletta et al., 2016 (L. Lassaletta, G. Billen, J. Garnier, L. Bouwman, E. Velazquez, N. D. Mueller, J. S. Gerber (2016). Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environmental Research Letters, 11(9), doi: http://dx.doi.org/10.1088/1748-9326/11/9/095007.)
  140. Lassaletta et al., 2019 (L. Lassaletta, F.Estellés, A.H.W. Beusen, L. Bouwman, S. Calvet, H.J.M. van Grinsven, J.C. Doelman, E. Stehfest, A. Uwizeye, H. Westhoek (2019). Future global pig production systems according to the Shared Socioeconomic Pathways. Science of the Total Environment, 665, pp. 739-751, doi: http://dx.doi.org/10.1016/j.scitotenv.2019.02.079.)
  141. Le Quéré et al., 2013 (C. Le Quéré, R. J. Andres, T. Boden, T. Conway, R. A. Houghton, J. I. House, G. Marland, G. P. Peters, G. R. Van Der Werf, A. Ahlström, R. M. Andrew, L. Bopp, J. G. Canadell, P. Ciais, S. C. Doney, C. Enright, P. Friedlingstein, C. Huntingford, A. K. Jain, C. Jourdain, E. Kato, R. F. Keeling, K. Klein Goldewijk, S. Levis, P. Levy, M. Lomas, B. Poulter, M. R. Raupach, J. Schwinger, S. Sitch, B. D. Stocker, N. Viovy, S. Zaehle, N. Zeng (2013). The global carbon budget 1959-2011. Earth System Science Data, 5(1), pp. 165-185, doi: http://dx.doi.org/10.5194/essd-5-165-2013.)
  142. Le Quéré et al., 2014 (C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G. H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. Van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, S. Zaehle (2014). Global carbon budget 2013. Earth System Science Data, 6(1), pp. 235-263, doi: http://dx.doi.org/10.5194/essd-6-235-2014.)
  143. Le Quéré et al., 2015a (C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. Van Der Werf, N. Viovy, Y. P. Wang, R. Wanninkhof, A. Wiltshire, N. Zeng (2015). Global carbon budget 2014. Earth System Science Data, 7(1), pp. 47-85, doi: http://dx.doi.org/10.5194/essd-7-47-2015.)
  144. Le Quéré et al., 2015b (C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. Van Der Laan-Luijkx, G. R. Van Der Werf, S. Van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, N. Zeng (2015). Global Carbon Budget 2015. Earth System Science Data, 7(2), pp. 349-396, doi: http://dx.doi.org/10.5194/essd-7-349-2015.)
  145. Le Quéré et al., 2016 (C. Le Quéré, R. M. Andrew, J. G. Canadell, S. Sitch, J. Ivar Korsbakken, G. P. Peters, A. C. Manning, T. A. Boden, P. P. Tans, R. A. Houghton, R. F. Keeling, S. Alin, O. D. Andrews, P. Anthoni, L. Barbero, L. Bopp, F. Chevallier, L. P. Chini, P. Ciais, K. Currie, C. Delire, S. C. Doney, P. Friedlingstein, T. Gkritzalis, I. Harris, J. Hauck, V. Haverd, M. Hoppema, K. Klein Goldewijk, A. K. Jain, E. Kato, A. Körtzinger, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, D. Lombardozzi, J. R. Melton, N. Metzl, F. Millero, P. M. S. Monteiro, D. R. Munro, J. E. M. S. Nabel, S. I. Nakaoka, K. O'Brien, A. Olsen, A. M. Omar, T. Ono, D. Pierrot, B. Poulter, C. Rödenbeck, J. Salisbury, U. Schuster, J. Schwinger, R. Séférian, I. Skjelvan, B. D. Stocker, A. J. Sutton, T. Takahashi, H. Tian, B. Tilbrook, I. T. Van Der Laan-Luijkx, G. R. Van Der Werf, N. Viovy, A. P. Walker, A. J. Wiltshire, S. Zaehle (2016). Global Carbon Budget 2016. Earth System Science Data, 8(2), pp. 605-649, doi: http://dx.doi.org/10.5194/essd-8-605-2016.)
  146. Le Quéré et al., 2019 (L. Lassaletta, F.Estellés, A.H.W. Beusen, L. Bouwman, S. Calvet, H.J.M. van Grinsven, J.C. Doelman, E. Stehfest, A. Uwizeye, H. Westhoek (2019). Drivers of declining CO2 emissions in 18 developed economies. Nature Climate Change, 9(3), pp. 213-217, doi: http://dx.doi.org/10.1038/s41558-019-0419-7.)
  147. Leclere et al., 2020 (David Leclère, Michael Obersteiner, Mike Barrett, Stuart H. M. Butchart, Abhishek Chaudhary, Adriana De Palma, Fabrice A. J. DeClerck, Moreno Di Marco, Jonathan C. Doelman, Martina Dürauer, Robin Freeman, Michael Harfoot, Tomoko Hasegawa, Stefanie Hellweg, Jelle P. Hilbers, Samantha L. L. Hill, Florian Humpenöder, Nancy Jennings, Tamás Krisztin, Georgina M. Mace, Haruka Ohashi, Alexander Popp, Andy Purvis, Aafke M. Schipper, Andrzej Tabeau, Hugo Valin, Hans van Meijl, Willem-Jan van Zeist, Piero Visconti, Rob Alkemade, Rosamunde Almond, Gill Bunting, Neil D. Burgess, Sarah E. Cornell, Fulvio Di Fulvio, Simon Ferrier, Steffen Fritz, Shinichiro Fujimori, Monique Grooten, Thomas Harwood, Petr Havlík, Mario Herrero, Andrew J. Hoskins, Martin Jung, Tom Kram, Hermann Lotze-Campen, Tetsuya Matsui, Carsten Meyer, Deon Nel, Tim Newbold, Guido Schmidt-Traub, Elke Stehfest, Bernardo B. N. Strassburg, Detlef P. van Vuuren, Chris Ware, James E. M. Watson, Wenchao Wu and Lucy Young (2020). Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 585, pp. 551–556, doi: http://dx.doi.org/https://doi.org/10.1038/s41586-020-2705-y.
    Link to PBL-website: https://www.pbl.nl/en/publications/bending-the-curve-of-terrestrial-biodiversity-0.
    )
  148. Li et al., 2020 (Li W., Ciais P., Stehfest E., Van Vuuren D., Popp A., Arneth A., Di Fulvio F., Doelman J., Humpenöder F., B Harper A., Park T., Makowski D., Havlik P., Obersteiner M., Wang J., Krause A., Liu W. (2020). Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale. Earth System Science Data, 12(2), pp. 789-804, doi: http://dx.doi.org/10.5194/essd-12-789-2020.)
  149. Liu et al., 2016a (B. Liu, S. Asseng, C. Müller, F. Ewert, J. Elliott, D. B. Lobell, P. Martre, A. C. Ruane, D. Wallach, J. W. Jones, C. Rosenzweig, P. K. Aggarwal, P. D. Alderman, J. Anothai, B. Basso, C. Biernath, D. Cammarano, A. Challinor, D. Deryng, G. De Sanctis, J. Doltra, E. Fereres, C. Folberth, M. Garcia-Vila, S. Gayler, G. Hoogenboom, L. A. Hunt, R. C. Izaurralde, M. Jabloun, C. D. Jones, K. C. Kersebaum, B. A. Kimball, A. K. Koehler, S. N. Kumar, C. Nendel, G. J. O'Leary, J. E. Olesen, M. J. Ottman, T. Palosuo, P. V. V. Prasad, E. Priesack, T. A. M. Pugh, M. Reynolds, E. E. Rezaei, R. P. Rötter, E. Schmid, M. A. Semenov, I. Shcherbak, E. Stehfest, C. O. Stöckle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, P. Thorburn, K. Waha, G. W. Wall, E. Wang, J. W. White, J. Wolf, Z. Zhao, Y. Zhu (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6(12), pp. 1130-1136, doi: http://dx.doi.org/10.1038/nclimate3115.)
  150. Liu et al., 2016b (J. Liu, J. Zang, L. Bouwman, S. Liu, Z. Yu, X. Ran (2016). Distribution and budget of dissolved and biogenic silica in the Bohai Sea and Yellow Sea. Biogeochemistry, 130(1-2), pp. 85-101, doi: http://dx.doi.org/10.1007/s10533-016-0244-2.)
  151. Lucas et al., 2013 (P. L. Lucas, P. R. Shukla, W. Chen, B. J. van Ruijven, S. Dhar, M. G. J. den Elzen, D. P. van Vuuren (2013). Implications of the international reduction pledges on long-term energy system changes and costs in China and India. Energy Policy, 63, pp. 1032-1041, doi: http://dx.doi.org/10.1016/j.enpol.2013.09.026.)
  152. Lucas et al., 2013b (P. L. Lucas, M. T. J. Kok, H. B. M. Hilderink, M. K. B. Lüdeke (2013). Human security at risk: Development impacts of global environmental change in drylands, A Changing Environment for Human Security: Transformative Approaches to Research, Policy and Action, pp. 91-104, URL: 10.4324/9780203109885.)
  153. Lucas et al., 2014 (P. L. Lucas, M. T. Kok, M. Nilsson, R. Alkemade (2014). Integrating biodiversity and ecosystem services in the post-2015 development agenda: Goal structure, target areas and means of implementation. Sustainability (Switzerland), 6(1), pp. 193-216, doi: http://dx.doi.org/10.3390/su6010193.)
  154. Lucas et al., 2015 (P. L. Lucas, J. Nielsen, K. Calvin, D. L. McCollum, G. Marangoni, J. Strefler, B. C. C. van der Zwaan, D. P. van Vuuren (2015). Future energy system challenges for Africa: Insights from Integrated Assessment Models. Energy Policy, 86, pp. 705-717, doi: http://dx.doi.org/10.1016/j.enpol.2015.08.017.)
  155. Luderer et al., 2018 (G. Luderer, Z. Vrontisi, C. Bertram, O.Y. Edelenbosch, R.C. Pietzcker, J. Rogelj, H.S. De Boer, L. Drouet, J. Emmerling, O. Fricko, S. Fujimori, P. Havlík, G. Iyer, K. Keramidas, A. Kitous, M. Pehl, V. Krey, K. Riahi, B. Saveyn, M. Tavoni, D.P. Van Vuuren, E. Kriegler (2018). Residual fossil CO2 emissions in 1.5-2 °c pathways. Nature Climate Change, 8(7), pp. 626-633, doi: http://dx.doi.org/10.1038/s41558-018-0198-6.)
  156. Macknick et al., 2011 (Macknick, Jordan, Newmark, Robin, Heath, Garvin, Hallett, K. C. (2011). Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies, National Renewable Energy Lab. (NREL), National Renewable Energy Lab. (NREL)(URL: https://dx.doi.org/10.2172/1009674).)
  157. Marangoni et al., 2017 (G. Marangoni, M. Tavoni, V. Bosetti, E. Borgonovo, P. Capros, O. Fricko, D. E. H. J. Gernaat, C. Guivarch, P. Havlik, D. Huppmann, N. Johnson, P. Karkatsoulis, I. Keppo, V. Krey, E. Ó Broin, J. Price, D. P. Van Vuuren (2017). Sensitivity of projected long-term CO 2 emissions across the Shared Socioeconomic Pathways. Nature Climate Change, 7(2), pp. 113-117, doi: http://dx.doi.org/10.1038/nclimate3199.
    Link to PBL-website: http://www.pbl.nl/en/publications/sensitivity-of-projected-long-term-co2-emissions-across-the-shared-socioeconomic-pathways.
    )
  158. McCollum et al. erratum, 2018 (D.L. McCollum, W. Zhou, C. Bertram, H.-S. de Boer, V. Bosetti, S. Busch, J. Després, L. Drouet, J. Emmerling, M. Fay, O. Fricko, S. Fujimori, M. Gidden, M. Harmsen, D. Huppmann, G. Iyer, V. Krey, E. Kriegler, C. Nicolas, S. Pachauri, S. Parkinson, M. Poblete-Cazenave, P. Rafaj, N. Rao, J. Rozenberg, A. Schmitz, W. Schoepp, D. van Vuuren, K. Riahi (2018).)
  159. McCollum et al., 2015 (D. L. McCollum, C. Wilson, H. Pettifor, K. Ramea, V. Krey, K. Riahi, C. Bertram, Z. Lin, O. Y. Edelenbosch, S. Fujisawa (2015). Improving the behavioral realism of global integrated assessment models: An application to consumers' vehicle choices. Transportation Research Part D: Transport and Environment, doi: http://dx.doi.org/10.1016/j.trd.2016.04.003.)
  160. McCollum et al., 2018a (D.L. McCollum, C. Wilson, M. Bevione, S. Carrara, O.Y. Edelenbosch, J. Emmerling, C. Guivarch, P. Karkatsoulis, I. Keppo, V. Krey, Z. Lin, E. Ó Broin, L. Paroussos, H. Pettifor, K. Ramea, K. Riahi, F. Sano, B. Solano Rodriguez, D.P. van Vuuren (2018). Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nature Energy, 3(8), pp. 664-673, doi: http://dx.doi.org/10.1038/s41560-018-0195-z.)
  161. McCollum et al., 2018b (D.L. McCollum, W. Zhou, C. Bertram, H.-S. De Boer, V. Bosetti, S. Busch, J. Després, L. Drouet, J. Emmerling, M. Fay, O. Fricko, S. Fujimori, M. Gidden, M. Harmsen, D. Huppmann, G. Iyer, V. Krey, E. Kriegler, C. Nicolas, S. Pachauri, S. Parkinson, M. Poblete-Cazenave, P. Rafaj, N. Rao, J. Rozenberg, A. Schmitz, W. Schoepp, D. Van Vuuren, K. Riahi (2018). Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nature Energy, 3(7), pp. 589-599, doi: http://dx.doi.org/10.1038/s41560-018-0179-z.)
  162. Meinshausen et al., 2011 (M. Meinshausen, S. J. Smith, K. Calvin, J. S. Daniel, M. L. T. Kainuma, J. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi, A. Thomson, G. J. M. Velders, D. P. P. van Vuuren (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), pp. 213-241, doi: http://dx.doi.org/10.1007/s10584-011-0156-z.)
  163. Meinshausen et al., 2011c (M. Meinshausen, S. J. Smith, K. Calvin, J. S. Daniel, M. L. T. Kainuma, J. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi, A. Thomson, G. J. M. Velders, D. P. P. van Vuuren (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), pp. 213-241.)
  164. Meinshausen et al., 2015 (M. Meinshausen, L. Jeffery, J. Guetschow, Y. Robiou Du Pont, J. Rogelj, M. Schaeffer, N. Höhne, M. Den Elzen, S. Oberthür, N. Meinshausen (2015). National post-2020 greenhouse gas targets and diversity-aware leadership. Nature Climate Change, 5(12), pp. 1098-1106, doi: http://dx.doi.org/10.1038/nclimate2826.)
  165. Meller et al., 2015a (L. Meller, W. Thuiller, S. Pironon, M. Barbet-Massin, A. Hof, M. Cabeza (2015). Balance between climate change mitigation benefits and land use impacts of bioenergy: Conservation implications for European birds. GCB Bioenergy, 7(4), pp. 741-751, doi: http://dx.doi.org/10.1111/gcbb.12178.)
  166. Meller et al., 2015b (L. Meller, D. P. van Vuuren, M. Cabeza (2015). Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios. Regional Environmental Change, 15(6), pp. 961-971, doi: http://dx.doi.org/10.1007/s10113-013-0504-9.)
  167. Mendoza Beltran et al., 2018 (A. Mendoza Beltran, B. Cox, C.Mutel, D.P. van Vuuren, D. Font Vivanco, S. Deetman, O.Y. Edelenbosch, J. Guinée, A. Tukker (2018). When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment. Journal of Industrial Ecology., -(-), pp. -, doi: http://dx.doi.org/10.1111/jiec.12825.)
  168. Mironenko et al., 2015 (O. Mironenko, P. L. Lucas, N. Tarasova, J. Zlinszky (2015). Sustainable development goals: Why do we need them?. Social Evolution and History, 14(2), pp. 176-190.)
  169. Molotoks et al., 2018 (A. Molotoks, E. Stehfest, J. Doelman, F. Albanito, N. Fitton, T.P. Dawson, P. Smith (2018). Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Global Change Biology, 24(12), pp. 5895-5908, doi: http://dx.doi.org/10.1111/gcb.14459.)
  170. Molotoks et al., 2020 (Molotoks A., Henry R., Stehfest E., Doelman J., Havlik P., Krisztin T., Alexander P., Dawson T.P., Smith P. (2020). Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794), doi: http://dx.doi.org/10.1098/rstb.2019.0189.)
  171. Naegler et al., 2015 (Tobias Naegler, Sonja Simon, Martin Klein, Hans Christian Gils (2015). Quantification of the European industrial heat demand by branch and temperature level. International Journal of Energy Research, 39(15), pp. 2019-2030, doi: http://dx.doi.org/https://doi.org/10.1002/er.3436.)
  172. Narayanan et al., 2012 (Narayanan, B., Aguiar A. and McDougall R. (2012). Global Trade, Assistance, and Production: The GTAP 8 Data Base., Center for Global Trade Analysis, Purdue University, West Lafayette.)
  173. Neumann et al., 2011a (K. Neumann, E. Stehfest, P. H. Verburg, S. Siebert, C. Müller, T. Veldkamp (2011). Exploring global irrigation patterns: A multilevel modelling approach. Agricultural Systems, 104(9), pp. 703-713, doi: http://dx.doi.org/10.1016/j.agsy.2011.08.004.)
  174. Neumann et al., 2011b (K. Neumann, P. H. Verburg, B. Elbersen, E. Stehfest, G. B. Woltjer (2011). Multi-scale scenarios of spatial-temporal dynamics in the European livestock sector. Agriculture, Ecosystems and Environment, 140(1-2), pp. 88-101, doi: http://dx.doi.org/10.1016/j.agee.2010.11.015.)
  175. Nijsen et al., 2012 (M. Nijsen, E. Smeets, E. Stehfest, D. P. van Vuuren (2012). An evaluation of the global potential of bioenergy production on degraded lands. GCB Bioenergy, 4(2), pp. 130-147, doi: http://dx.doi.org/10.1111/j.1757-1707.2011.01121.x.)
  176. Nilsson et al., 2013 (M. Nilsson, P. Lucas, T. Yoshida (2013). Towards an integrated framework for sdgs: Ultimate and enabling goals for the Case of energy. Sustainability (Switzerland), 5(10), pp. 4124-4151, doi: http://dx.doi.org/10.3390/su5104124.)
  177. Nykvist2015 (B. Nykvist, and M. Nilsson (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5, pp. 329–332, doi: http://dx.doi.org/https://doi.org/10.1038/nclimate2564.)
  178. O'Neill et al., 2014 (B. C. O'Neill, E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, D. P. van Vuuren (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122(3), pp. 387-400, doi: http://dx.doi.org/10.1007/s10584-013-0905-2.)
  179. O'Neill et al., 2016 (B. C. O'Neill, C. Tebaldi, D. P. Van Vuuren, V. Eyring, P. Friedlingstein, G. Hurtt, R. Knutti, E. Kriegler, J. F. Lamarque, J. Lowe, G. A. Meehl, R. Moss, K. Riahi, B. M. Sanderson (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), pp. 3461-3482, doi: http://dx.doi.org/10.5194/gmd-9-3461-2016.)
  180. O'Neill et al., 2017 (B. C. O'Neill, E. Kriegler, K. L. Ebi, E. Kemp-Benedict, K. Riahi, D. S. Rothman, B. J. van Ruijven, D. P. van Vuuren, J. Birkmann, K. Kok, M. Levy, W. Solecki (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, pp. 169-180, doi: http://dx.doi.org/10.1016/j.gloenvcha.2015.01.004.)
  181. Otto et al., 2015 (S. A. C. Otto, D. E. H. J. Gernaat, M. Isaac, P. L. Lucas, M. A. E. van Sluisveld, M. van den Berg, J. van Vliet, D. P. van Vuuren (2015). Impact of fragmented emission reduction regimes on the energy market and on CO2 emissions related to land use: A case study with China and the European Union as first movers. Technological Forecasting and Social Change, 90(PA), pp. 220-229, doi: http://dx.doi.org/10.1016/j.techfore.2014.01.015.)
  182. Overmars et al., 2011 (K. P. Overmars, E. Stehfest, J. P. M. Ros, A. G. Prins (2011). Indirect land use change emissions related to EU biofuel consumption: An analysis based on historical data. Environmental Science and Policy, 14(3), pp. 248-257, doi: http://dx.doi.org/10.1016/j.envsci.2010.12.012.)
  183. PBL, 2015 (M.G.J. den Elzen, A. K. Admiraal, M.R. Roelfsema (2015). PBL Climate Pledge INDC tool..
    Link to PBL-website: http://infographics.pbl.nl/indc/.
    )
  184. Pachauri et al., 2013 (S. Pachauri, B. J. Van Ruijven, Y. Nagai, K. Riahi, D. P. Van Vuuren, A. Brew-Hammond, N. Nakicenovic (2013). Pathways to achieve universal household access to modern energy by 2030. Environmental Research Letters, 8(2), doi: http://dx.doi.org/10.1088/1748-9326/8/2/024015.)
  185. Pan et al., 2017 (X. Pan, M.D. Elzen, N. Höhne, F. Teng, L. Wang (2017). Exploring fair and ambitious mitigation contributions under the Paris Agreement goals. Environmental Science and Policy, 74, pp. 49-56, doi: http://dx.doi.org/10.1016/j.envsci.2017.04.020.)
  186. Pastor et al., 2019 (A. V. Pastor, A. Palazzo, P. Havlik, H. Biemans, Y. Wada, M. Obersteiner, P. Kabat & F. Ludwig (2019). The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2, pp. 499–507, doi: http://dx.doi.org/https://doi.org/10.1038/s41893-019-0287-1.)
  187. Peñuelas et al., 2017 (J. Peñuelas, J. Sardans, B. Walsh, P. Ciais, I.A. Janssens, K. Riahi, F. Rydzak, D. Van Vuuren, M. Obersteiner (2017). Possible pathways for balancing CO2 emissions and sinks as agreed in Paris COP21. Ecosistemas, 26(3), pp. 103-105, doi: http://dx.doi.org/10.7818/ECOS.2017.26-3.12.)
  188. Pielke et al., 2011 (R. A. Pielke, A. Pitman, D. Niyogi, R. Mahmood, C. McAlpine, F. Hossain, K. K. Goldewijk, U. Nair, R. Betts, S. Fall, M. Reichstein, P. Kabat, N. de Noblet (2011). Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdisciplinary Reviews: Climate Change, 2(6), pp. 828-850, doi: http://dx.doi.org/10.1002/wcc.144.)
  189. Popp et al., 2014 (A. Popp, S. K. Rose, K. Calvin, D. P. Van Vuuren, J. P. Dietrich, M. Wise, E. Stehfest, F. Humpenöder, P. Kyle, J. Van Vliet, N. Bauer, H. Lotze-Campen, D. Klein, E. Kriegler (2014). Land-use transition for bioenergy and climate stabilization: Model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change, 123(3-4), pp. 495-509, doi: http://dx.doi.org/10.1007/s10584-013-0926-x.)
  190. Popp et al., 2017 (A. Popp, K. Calvin, S. Fujimori, P. Havlik, F. Humpenöder, E. Stehfest, B. L. Bodirsky, J. P. Dietrich, J. C. Doelmann, M. Gusti, T. Hasegawa, P. Kyle, M. Obersteiner, A. Tabeau, K. Takahashi, H. Valin, S. Waldhoff, I. Weindl, M. Wise, E. Kriegler, H. Lotze-Campen, O. Fricko, K. Riahi, D. P. V. Vuuren (2017). Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42, pp. 331-345, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.10.002.)
  191. Prestele et al., 2016 (R. Prestele, P. Alexander, M. D. A. Rounsevell, A. Arneth, K. Calvin, J. Doelman, D. A. Eitelberg, K. Engström, S. Fujimori, T. Hasegawa, P. Havlik, F. Humpenöder, A. K. Jain, T. Krisztin, P. Kyle, P. Meiyappan, A. Popp, R. D. Sands, R. Schaldach, J. Schüngel, E. Stehfest, A. Tabeau, H. Van Meijl, J. Van Vliet, P. H. Verburg (2016). Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Global Change Biology, 22(12), pp. 3967-3983, doi: http://dx.doi.org/10.1111/gcb.13337.)
  192. Prestele et al., 2017 ((2017). Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth System Dynamics, 8(2), pp. 369-386, doi: http://dx.doi.org/10.5194/esd-8-369-2017.)
  193. Prins et al., 2011 (A. G. Prins, B. Eickhout, M. Banse, H. van Meijl, W. Rienks, G. Woltjer (2011). Global impacts of European Agricultural and biofuel policies. Ecology and Society, 16(1).)
  194. Pugh et al., 2015 (T. A. M. Pugh, A. Arneth, S. Olin, A. Ahlström, A. D. Bayer, K. Klein Goldewijk, M. Lindeskog, G. Schurgers (2015). Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environmental Research Letters, 10(12), doi: http://dx.doi.org/10.1088/1748-9326/10/12/124008.)
  195. Raupach et al., 2014 (M. R. Raupach, S. J. Davis, G. P. Peters, R. M. Andrew, J. G. Canadell, P. Ciais, P. Friedlingstein, F. Jotzo, D. P. Van Vuuren, C. Le Quéré (2014). Sharing a quota on cumulative carbon emissions. Nature Climate Change, 4(10), pp. 873-879, doi: http://dx.doi.org/10.1038/nclimate2384.)
  196. Riahi et al., 2015 (K. Riahi, E. Kriegler, N. Johnson, C. Bertram, M. den Elzen, J. Eom, M. Schaeffer, J. Edmonds, M. Isaac, V. Krey, T. Longden, G. Luderer, A. Méjean, D. L. McCollum, S. Mima, H. Turton, D. P. van Vuuren, K. Wada, V. Bosetti, P. Capros, P. Criqui, M. Hamdi-Cherif, M. Kainuma, O. Edenhofer (2015). Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change, 90(PA), pp. 8-23, doi: http://dx.doi.org/10.1016/j.techfore.2013.09.016.)
  197. Riahi et al., 2016 (Keywan Riahi et al. Of PBL: Detlef van Vuuren, Tom Kram, Elke Stehfest, David Gernaat, Mathijs Harmsen, Jonathan Doelman (2016). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.gloenvcha.2016.05.009.)
  198. Riahi et al., 2017 (K. Riahi, D. P. van Vuuren, E. Kriegler, J. Edmonds, B. C. O'Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko, W. Lutz, A. Popp, J. C. Cuaresma, S. Kc, M. Leimbach, L. Jiang, T. Kram, S. Rao, J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik, F. Humpenöder, L. A. Da Silva, S. Smith, E. Stehfest, V. Bosetti, J. Eom, D. Gernaat, T. Masui, J. Rogelj, J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark, J. C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner, A. Tabeau, M. Tavoni (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, pp. 153-168, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.05.009.)
  199. Richards et al., 2018 (M.B. Richards, E. Wollenberg, D. van Vuuren (2018). National contributions to climate change mitigation from agriculture: allocating a global target. Climate Policy, 18(10), pp. 1271-1285, doi: http://dx.doi.org/10.1080/14693062.2018.1430018.)
  200. Richter et al., 2011 (B. D. Richter, M. M. Davis, C. Apse, C. Konrad (2011). A PRESUMPTIVE STANDARD FOR ENVIRONMENTAL FLOW PROTECTION. River Research and Applications, 28(8), pp. 1312-1321.)
  201. Roelfsema et al., 2018a (M. Roelfsema, H. Fekete, N. Höhne, M. den Elzen, N. Forsell, T. Kuramochi, H. de Coninck, D.P. van Vuuren (2018). Reducing global GHG emissions by replicating successful sector examples: the ‘good practice policies’ scenario. Climate Policy, 18(9), pp. 1103-1113, doi: http://dx.doi.org/10.1080/14693062.2018.1481356.)
  202. Roelfsema et al., 2018b (M. Roelfsema, M. Harmsen, J.J.G. Olivier, A.F. Hof, D.P. van Vuuren (2018). Integrated assessment of international climate mitigation commitments outside the UNFCCC. Global Environmental Change, 48, pp. 67-75, doi: http://dx.doi.org/10.1016/j.gloenvcha.2017.11.001.)
  203. Rogelj et al., 2011 (J. Rogelj, W. Hare, J. Lowe, D. P. Van Vuuren, K. Riahi, B. Matthews, T. Hanaoka, K. Jiang, M. Meinshausen (2011). Emission pathways consistent with a 2°C global temperature limit. Nature Climate Change, 1(8), pp. 413-418, doi: http://dx.doi.org/10.1038/nclimate1258.)
  204. Rogelj et al., 2016b (J. Rogelj, M. Schaeffer, P. Friedlingstein, N. P. Gillett, D. P. Van Vuuren, K. Riahi, M. Allen, R. Knutti (2016). Differences between carbon budget estimates unravelled. Nature Climate Change, 6(3), pp. 245-252, doi: http://dx.doi.org/10.1038/nclimate2868.)
  205. Rogelj et al., 2018 (J. Rogelj, A. Popp, K.V. Calvin, G. Luderer, J. Emmerling, D. Gernaat, S. Fujimori, J. Strefler, T. Hasegawa, G. Marangoni, V. Krey, E. Kriegler, K. Riahi, D.P. Van Vuuren, J. Doelman, L. Drouet, J. Edmonds, O. Fricko, M. Harmsen, P. Havlík, F. Humpenöder, E. Stehfest, M. Tavoni (2018). Scenarios towards limiting global mean temperature increase below 1.5 °c. Nature Climate Change, 8(4), pp. 325-332, doi: http://dx.doi.org/10.1038/s41558-018-0091-3.)
  206. Rose et al., 2012 (S. K. Rose, H. Ahammad, B. Eickhout, B. Fisher, A. Kurosawa, S. Rao, K. Riahi, D. P. van Vuuren (2012). Land-based mitigation in climate stabilization. Energy Economics, 34(1), pp. 365-380, doi: http://dx.doi.org/10.1016/j.eneco.2011.06.004.)
  207. Rose et al., 2014a (S. K. Rose, E. Kriegler, R. Bibas, K. Calvin, A. Popp, D. P. van Vuuren, J. Weyant (2014). Bioenergy in energy transformation and climate management. Climatic Change, 123(3-4), pp. 477-493, doi: http://dx.doi.org/10.1007/s10584-013-0965-3.)
  208. Rose et al., 2014b (S. K. Rose, R. Richels, S. Smith, K. Riahi, J. Strefler, D. P. van Vuuren (2014). Non-Kyoto radiative forcing in long-run greenhouse gas emissions and climate change scenarios. Climatic Change, 123(3-4), pp. 511-525, doi: http://dx.doi.org/10.1007/s10584-013-0955-5.)
  209. Rosenzweig et al., 2014 (C. Rosenzweig, J. Elliott, D. Deryng, A. C. Ruane, C. Müller, A. Arneth, K. J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T. A. M. Pugh, E. Schmid, E. Stehfest, H. Yang, J. W. Jones (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111(9), pp. 3268-3273, doi: http://dx.doi.org/10.1073/pnas.1222463110.)
  210. Rosenzweig et al., 2017 (C. Rosenzweig, N. W. Arnell, K. L. Ebi, H. Lotze-Campen, F. Raes, C. Rapley, M. S. Smith, W. Cramer, K. Frieler, C. P. O. Reyer, J. Schewe, D. Van Vuuren, L. Warszawski (2017). Assessing inter-sectoral climate change risks: The role of ISIMIP. Environmental Research Letters, 12(1), doi: http://dx.doi.org/10.1088/1748-9326/12/1/010301.)
  211. Santos et al., 2017 (M.J. Santos, S.C. Dekker, V. Daioglou, M.C. Braakhekke, D.P. van Vuuren (2017). Modeling the effects of future growing demand for charcoal in the tropics. Frontiers in Environmental Science, 5(JUN), doi: http://dx.doi.org/10.3389/fenvs.2017.00028.)
  212. Sattari et al., 2012 (S. Z. Sattari, A. F. Bouwman, K. E. Giller, M. K. Van Ittersum (2012). Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proceedings of the National Academy of Sciences of the United States of America, 109(16), pp. 6348-6353, doi: http://dx.doi.org/10.1073/pnas.1113675109.)
  213. Sattari et al., 2014a (S. Z. Sattari, M. K. van Ittersum, A. F. Bouwman, A. L. Smit, B. H. Janssen (2014). Crop yield response to soil fertility and N, P, K inputs in different environments: Testing and improving the QUEFTS model. Field Crops Research, 157, pp. 35-46, doi: http://dx.doi.org/10.1016/j.fcr.2013.12.005.)
  214. Sattari et al., 2014b (S. Z. Sattari, M. K. Van Ittersum, K. E. Giller, F. Zhang, A. F. Bouwman (2014). Key role of China and its agriculture in global sustainable phosphorus management. Environmental Research Letters, 9(5), doi: http://dx.doi.org/10.1088/1748-9326/9/5/054003.)
  215. Sattari et al., 2016 (S. Z. Sattari, A. F. Bouwman, R. Martinez Rodríguez, A. H. W. Beusen, M. K. Van Ittersum (2016). Negative global phosphorus budgets challenge sustainable intensification of grasslands. Nature Communications, 7, doi: http://dx.doi.org/10.1038/ncomms10696.)
  216. Schaeffer et al., 2015 (M. Schaeffer, L. Gohar, E. Kriegler, J. Lowe, K. Riahi, D. van Vuuren (2015). Mid- and long-term climate projections for fragmented and delayed-action scenarios. Technological Forecasting and Social Change, 90(PA), pp. 257-268, doi: http://dx.doi.org/10.1016/j.techfore.2013.09.013.)
  217. Schmidinger and Stehfest, 2012 (K. Schmidinger, E. Stehfest (2012). Including CO2 implications of land occupation in LCAs-method and example for livestock products. International Journal of Life Cycle Assessment, 17(8), pp. 962-972, doi: http://dx.doi.org/10.1007/s11367-012-0434-7.)
  218. Seneviratne et al., 2018 (S.I. Seneviratne, R. Wartenburger, B.P. Guillod, A.L. Hirsch, M.M. Vogel, V. Brovkin, D.P. Van Vuuren, N. Schaller, L. Boysen, K.V. Calvin, J. Doelman, P. Greve, P. Havlik, F. Humpenöder, T. Krisztin, D. Mitchell, A. Popp, K. Riahi, J. Rogelj, C.-F. Schleussner, J. Sillmann, E. Stehfest (2018). Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), doi: http://dx.doi.org/10.1098/rsta.2016.0450.)
  219. Smith et al., 2012 (KR Smith, K Balakrishnan, C.D. Butler, Z. Chafe, I. Fairlie, P. Kinney, T. Kjellstrom, D.L. Mauzerall, T. McKone, A. McMichael, M. Schneider, P Wilkinson (2012). Energy and health. In: GEA (eds.), The Global Energy Assessment: Toward a More Sustainable Future. Cambridge University Press, Cambridge, UK / IIASA, Laxenburg.)
  220. Smith et al., 2015 (S. J. Smith, L. E. Clarke, J. A. Edmonds, J. Kejun, E. Kriegler, T. Masui, K. Riahi, P. R. Shukla, M. Tavoni, D. P. Van Vuuren, J. P. Weyant (2015). Long history of IAM comparisons. Nature Climate Change, 5(5), pp. 391, doi: http://dx.doi.org/10.1038/nclimate2576.)
  221. Smith et al., 2016a (P. Smith, S. J. Davis, F. Creutzig, S. Fuss, J. Minx, B. Gabrielle, E. Kato, R. B. Jackson, A. Cowie, E. Kriegler, D. P. Van Vuuren, J. Rogelj, P. Ciais, J. Milne, J. G. Canadell, D. McCollum, G. Peters, R. Andrew, V. Krey, G. Shrestha, P. Friedlingstein, T. Gasser, A. Grübler, W. K. Heidug, M. Jonas, C. D. Jones, F. Kraxner, E. Littleton, J. Lowe, J. R. Moreira, N. Nakicenovic, M. Obersteiner, A. Patwardhan, M. Rogner, E. Rubin, A. Sharifi, A. Torvanger, Y. Yamagata, J. Edmonds, C. Yongsung (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6(1), pp. 42-50, doi: http://dx.doi.org/10.1038/nclimate2870.)
  222. Smith et al., 2016b (S. J. Smith, S. Rao, K. Riahi, D. P. van Vuuren, K. V. Calvin, P. Kyle (2016). Future aerosol emissions: a multi-model comparison. Climatic Change, 138(1-2), pp. 13-24, doi: http://dx.doi.org/10.1007/s10584-016-1733-y.)
  223. Sotto et al., 2015 (L. P. A. Sotto, A. H. W. Beusen, C. L. Villanoy, L. F. Bouwman, G. S. Jacinto (2015). Nutrient load estimates for Manila Bay, Philippines using population data. Ocean Science Journal, 50(2), pp. 467-474, doi: http://dx.doi.org/10.1007/s12601-015-0042-0.)
  224. Stehfest, 2014 (E. Stehfest (2014). Diet: Food choices for health and planet. Nature, 515(7528), pp. 501-502, doi: http://dx.doi.org/10.1038/nature13943.)
  225. Sterzel et al., 2014 (T. Sterzel, M. Lüdeke, M. Kok, C. Walther, D. Sietz, I. de Soysa, P. Lucas, P. Janssen (2014). Armed conflict distribution in global drylands through the lens of a typology of socio-ecological vulnerability. Regional Environmental Change, 14(4), pp. 1419-1435, doi: http://dx.doi.org/10.1007/s10113-013-0553-0.)
  226. Stocker et al., 2013 (B. D. Stocker, R. Roth, F. Joos, R. Spahni, M. Steinacher, S. Zaehle, L. Bouwman, R. Xu, I. C. Prentice (2013). Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nature Climate Change, 3(7), pp. 666-672, doi: http://dx.doi.org/10.1038/nclimate1864.)
  227. Stoorvogel et al., 2012 (J. J. Stoorvogel, A. J.A.M. Temme, M. Bakkenes, N.H. Batjes, J. Brandsma (2012). Global mapping of soil properties and human induced changes: S-World 1.1, Land Dynamics Group, Wageningen University (Internal Report), The Netherlands.)
  228. Struijs et al., 2011 (J. Struijs, A. Beusen, D. De Zwart, M. Huijbregts (2011). Characterization factors for inland water eutrophication at the damage level in life cycle impact assessment. International Journal of Life Cycle Assessment, 16(1), pp. 59-64, doi: http://dx.doi.org/10.1007/s11367-010-0232-z.)
  229. Szogs et al., 2017 (S. Szogs, A. Arneth, P. Anthoni, J.C. Doelman, F. Humpenöder, A. Popp, T.A.M. Pugh, E. Stehfest (2017). Impact of LULCC on the emission of BVOCs during the 21st century. Atmospheric Environment, 165, pp. 73-87, doi: http://dx.doi.org/10.1016/j.atmosenv.2017.06.025.)
  230. Tabeau et al., 2017 (A. Tabeau, H. van Meijl, K. P. Overmars, E. Stehfest (2017). REDD policy impacts on the agri-food sector and food security. Food Policy, 66, pp. 73-87, doi: http://dx.doi.org/10.1016/j.foodpol.2016.11.006.)
  231. Tavoni et al., 2015 (M. Tavoni, E. Kriegler, K. Riahi, D. P. Van Vuuren, T. Aboumahboub, A. Bowen, K. Calvin, E. Campiglio, T. Kober, J. Jewell, G. Luderer, G. Marangoni, D. McCollum, M. Van Sluisveld, A. Zimmer, B. Van Der Zwaan (2015). Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Climate Change, 5(2), pp. 119-126, doi: http://dx.doi.org/10.1038/nclimate2475.)
  232. Tittensor et al., 2014 (D. P. Tittensor, M. Walpole, S. L. L. Hill, D. G. Boyce, G. L. Britten, N. D. Burgess, S. H. M. Butchart, P. W. Leadley, E. C. Regan, R. Alkemade, R. Baumung, C. Bellard, L. Bouwman, N. J. Bowles-Newark, A. M. Chenery, W. W. L. Cheung, V. Christensen, H. D. Cooper, A. R. (2014). A mid-term analysis of progress toward international biodiversity targets. Science, 346(6206), pp. 241-244, doi: http://dx.doi.org/10.1126/science.1257484.)
  233. Toreti et al., 2020 (Andrea Toreti, Delphine Deryng, Francesco N. Tubiello, Christoph Müller, Bruce A. Kimball, Gerald Moser, Kenneth Boote, Senthold Asseng, Thomas A. M. Pugh, Eline Vanuytrecht, Håkan Pleijel, Heidi Webber, Jean-Louis Durand, Frank Dentener, Andrej Ceglar, Xuhui Wang, Franz Badeck, Remi Lecerf, Gerard W. Wall, Maurits van den Berg, Petra Hoegy, Raul Lopez-Lozano, Matteo Zampieri, Stefano Galmarini, Garry J. O’Leary, Remy Manderscheid, Erik Mencos Contreras & Cynthia Rosenzweig (2020). Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food, 1, pp. 775-782, doi: http://dx.doi.org/https://doi.org/10.1038/s43016-020-00195-4.)
  234. Turnheim et al., 2015 (B. Turnheim, F. Berkhout, F. Geels, A. Hof, A. McMeekin, B. Nykvist, D. van Vuuren (2015). Evaluating sustainability transitions pathways: Bridging analytical approaches to address governance challenges. Global Environmental Change, 35, pp. 239-253, doi: http://dx.doi.org/10.1016/j.gloenvcha.2015.08.010.)
  235. USGS, 2013 (Geological Survey World Conventional Resources Assessment Team (2013). Supporting data for the U.S. Geological Survey 2012 world assessment of undiscovered oil and gas resources: U.S. Geological Survey Digital Data Series DDS–69–FF.URL: https://doi.org/10.3133/ds69FF)
  236. Van Bussel et al., 2015 (L. G. J. van Bussel, E. Stehfest, S. Siebert, C. Müller, F. Ewert (2015). Simulation of the phenological development of wheat and maize at the global scale. Global Ecology and Biogeography, 24(9), pp. 1018-1029, doi: http://dx.doi.org/10.1111/geb.12351.)
  237. Van Den Berg et al., 2015 (M. Van Den Berg, A. F. Hof, J. Van Vliet, D. P. Van Vuuren (2015). Impact of the choice of emission metric on greenhouse gas abatement and costs. Environmental Research Letters, 10(2), doi: http://dx.doi.org/10.1088/1748-9326/10/2/024001.)
  238. Van Den Berg et al., 2016 (M. van den Berg, K. Neumann, D. P. van Vuuren, A. F. Bouwman, T. Kram, J. Bakkes (2016). Exploring resource efficiency for energy, land and phosphorus use: Implications for resource scarcity and the global environment. Global Environmental Change, 36, pp. 21-34, doi: http://dx.doi.org/10.1016/j.gloenvcha.2015.09.016.)
  239. Van Dijk et al., 2020 (van Dijk M., Gramberger M., Laborde D., Mandryk M., Shutes L., Stehfest E., Valin H., Faradsch K. (2020). Stakeholder-designed scenarios for global food security assessments. Global Food Security, 24, doi: http://dx.doi.org/10.1016/j.gfs.2020.100352.)
  240. Van Grinsven et al., 2014 (H. J. M. Van Grinsven, J. H. J. Spiertz, H. J. Westhoek, A. F. Bouwman, J. W. Erisman (2014). Nitrogen use and food production in European regions from a global perspective. Journal of Agricultural Science, 152, pp. S9-S19, doi: http://dx.doi.org/10.1017/S0021859613000853.)
  241. Van Grinsven et al., 2015 (H. J. M. Van Grinsven, L. Bouwman, K. G. Cassman, H. M. Van Es, M. L. McCrackin, A. H. W. Beusen (2015). Losses of ammonia and nitrate from agriculture and their effect on nitrogen recovery in the European Union and the United States between 1900 and 2050. Journal of Environmental Quality, 44(2), pp. 356-367, doi: http://dx.doi.org/10.2134/jeq2014.03.0102.)
  242. Van Meijl et al., 2020 (van Meijl H., Shutes L., Valin H., Stehfest E., van Dijk M., Kuiper M., Tabeau A., van Zeist W.-J., Hasegawa T., Havlik P. (2020). Modelling alternative futures of global food security: Insights from FOODSECURE. Global Food Security, 25, doi: http://dx.doi.org/10.1016/j.gfs.2020.100358.)
  243. Van Meijl et al., 2020b (Hans van Meijl, Andrzej Tabeau, Elke Stehfest, Jonathan Doelman and Paul Lucas (2020). How food secure are the green, rocky and middle roads: food security effects in different world development paths. Environmental Research Communications, 2(3), doi: http://dx.doi.org/https://doi.org/10.1088/2515-7620/ab7aba.)
  244. Van Puijenbroek et al., 2015 (P. J. T. M. Van Puijenbroek, A. F. Bouwman, A. H. W. Beusen, P. L. Lucas (2015). Global implementation of two shared socioeconomic pathways for future sanitation and wastewater flows. Water Science and Technology, 71(2), pp. 227-233, doi: http://dx.doi.org/10.2166/wst.2014.498.)
  245. Van Ruijven et al. erratum, 2017 (B.J. van Ruijven, D.P. van Vuuren, W. Boskaljon, M. Neelis, D. Saygin, M.K. Patel (2017).)
  246. Van Ruijven et al., 2011b (B. Van Ruijven, J. F. Lamarque, D. P. Van Vuuren, T. Kram, H. Eerens (2011). Emission scenarios for a global hydrogen economy and the consequences for global air pollution. Global Environmental Change, 21(3), pp. 983-994, doi: http://dx.doi.org/10.1016/j.gloenvcha.2011.03.013.)
  247. Van Ruijven et al., 2012b (B. J. van Ruijven, D. P. van Vuuren, J. van Vliet, A. Mendoza Beltran, S. Deetman, M. G. J. den Elzen (2012). Implications of greenhouse gas emission mitigation scenarios for the main Asian regions. Energy Economics, 34(SUPPL. 3), doi: http://dx.doi.org/10.1016/j.eneco.2012.03.013.)
  248. Van Ruijven et al., 2012c (B. J. van Ruijven, M. Weitzel, M. G. J. den Elzen, A. F. Hof, D. P. van Vuuren, S. Peterson, D. Narita (2012). Emission allowances and mitigation costs of China and India resulting from different effort-sharing approaches. Energy Policy, 46, pp. 116-134, doi: http://dx.doi.org/10.1016/j.enpol.2012.03.042.)
  249. Van Ruijven et al., 2014a (B. J. van Ruijven, K. Daenzer, K. Fisher-Vanden, T. Kober, S. Paltsev, R. H. Beach, S. L. Calderon, K. Calvin, M. Labriet, A. Kitous, A. F. P. Lucena, D. P. van Vuuren (2014). Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions. Energy Economics, 56, pp. 499-512, doi: http://dx.doi.org/10.1016/j.eneco.2015.02.003.)
  250. Van Ruijven et al., 2014b (B. J. van Ruijven, M. A. Levy, A. Agrawal, F. Biermann, J. Birkmann, T. R. Carter, K. L. Ebi, M. Garschagen, B. Jones, R. Jones, E. Kemp-Benedict, M. Kok, K. Kok, M. C. Lemos, P. L. Lucas, B. Orlove, S. Pachauri, T. M. Parris, A. Patwardhan, A. Petersen, B. L. Preston, J. Ribot, D. S. Rothman, V. J. Schweizer (2014). Enhancing the relevance of shared socioeconomic pathways for climate change impacts, adaptation and vulnerability research. Climatic Change, 122(3), pp. 481-494, doi: http://dx.doi.org/10.1007/s10584-013-0931-0.)
  251. Van Sluisveld et al., 2015 (M. A. E. van Sluisveld, J. H. M. Harmsen, N. Bauer, D. L. McCollum, K. Riahi, M. Tavoni, D. P. van Vuuren, C. Wilson, B. van der Zwaan (2015). Comparing future patterns of energy system change in 2°C scenarios with historically observed rates of change. Global Environmental Change, 35, pp. 436-449, doi: http://dx.doi.org/10.1016/j.gloenvcha.2015.09.019.)
  252. Van Sluisveld et al., 2016 (M. A. E. van Sluisveld, S. H. Martínez, V. Daioglou, D. P. van Vuuren (2016). Exploring the implications of lifestyle change in 2°C mitigation scenarios using the IMAGE integrated assessment model. Technological Forecasting and Social Change, 102, pp. 309-319, doi: http://dx.doi.org/10.1016/j.techfore.2015.08.013.)
  253. Van Sluisveld et al., 2017 (M.A.E. van Sluisveld, A.F. Hof, D.P. van Vuuren, P. Boot, P. Criqui, F.C. Matthes, J. Notenboom, S.L. Pedersen, B. Pfluger, J. Watson (2017). Low-carbon strategies towards 2050: Comparing ex-ante policy evaluation studies and national planning processes in Europe. Environmental Science and Policy, 78, pp. 89-96, doi: http://dx.doi.org/10.1016/j.envsci.2017.08.022.)
  254. Van Sluisveld et al., 2018 (M.A.E. van Sluisveld, M.J.H.M. Harmsen, D.P. van Vuuren, V. Bosetti, C. Wilson, B. van der Zwaan (2018). Comparing future patterns of energy system change in 2 °C scenarios to expert projections. Global Environmental Change, 50, pp. 201-211, doi: http://dx.doi.org/10.1016/j.gloenvcha.2018.03.009.)
  255. Van Soest et al., 2017a (H.L. van Soest, H.S. de Boer, M. Roelfsema, M.G.J. den Elzen, A. Admiraal, D.P. van Vuuren, A.F. Hof, M. van den Berg, M.J.H.M. Harmsen, D.E.H.J. Gernaat, N. Forsell (2017). Early action on Paris Agreement allows for more time to change energy systems. Climatic Change, 144(2), pp. 165-179, doi: http://dx.doi.org/10.1007/s10584-017-2027-8.)
  256. Van Soest et al., 2017b (H.L. Van Soest, L.A. Reis, L. Drouet, D.P. Van Vuuren, M.G.J. Den Elzen, M. Tavoni, K. Akimoto, K.V. Calvin, P. Fragkos, A. Kitous, G. Luderer, K. Riahi (2017). Low-emission pathways in 11 major economies: Comparison of cost-optimal pathways and Paris climate proposals. Climatic Change, 142(3-4), pp. 491-504, doi: http://dx.doi.org/10.1007/s10584-017-1964-6.)
  257. Van Teeffelen et al., 2014 (A. van Teeffelen, L. Meller, J. van Minnen, J. Vermaat, M. Cabeza (2014). . Regional Environmental Change, 15(6), pp. 997-1010, doi: http://dx.doi.org/10.1007/s10113-014-0647-3.)
  258. Van Vliet et al., 2013 (J. van Vliet, A.F. Hof, A.Mendoza Beltrán, M. van den Berg, S. Deetman, M. den Elzen, P. Lucas, D.P. van Vuuren (2013). The impact of technology availability on the timing and costs of emission reductions for achieving long-term climate targets.. Climatic Change (in press), doi: http://dx.doi.org/10.1007/s10584-013-0961-7.
    Link to PBL-website: http://www.pbl.nl/en/publications/the-impact-of-technology-availability-on-the-timing-costs-emission-reductions-achieving-long-term-climate-targets.
    )
  259. Van Vliet et al., 2014 (J. van Vliet, A. F. Hof, A. Mendoza Beltran, M. van den Berg, S. Deetman, M. G. J. den Elzen, P. L. Lucas, D. P. van Vuuren (2014). The impact of technology availability on the timing and costs of emission reductions for achieving long-term climate targets. Climatic Change, 123(3-4), pp. 559-569, doi: http://dx.doi.org/10.1007/s10584-013-0961-7.)
  260. Van Vuuren and Carter, 2014 (D. P. van Vuuren, T. R. Carter (2014). Climate and socio-economic scenarios for climate change research and assessment: Reconciling the new with the ol. Climatic Change, 122(3), pp. 415-429, doi: http://dx.doi.org/10.1007/s10584-013-0974-2.)
  261. Van Vuuren and Kram, 2011 (D. P. van Vuuren, T. Kram (2011). Comment. Energy Economics, 33(4), pp. 644-647, doi: http://dx.doi.org/10.1016/j.eneco.2010.11.016.)
  262. Van Vuuren and Riahi, 2011 (D. P. van Vuuren, K. Riahi (2011). The relationship between short-term emissions and long-term concentration targets. Climatic Change, 104(3-4), pp. 793-801, doi: http://dx.doi.org/10.1007/s10584-010-0004-6.)
  263. Van Vuuren et al., 2011c (D. P. van Vuuren, J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G. C. Hurtt, T. Kram, V. Krey, J. F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S. J. Smith, S. K. Rose (2011). The representative concentration pathways: An overview. Climatic Change, 109(1), pp. 5-31, doi: http://dx.doi.org/10.1007/s10584-011-0148-z.)
  264. Van Vuuren et al., 2011d (D. P. van Vuuren, J. A. Edmonds, M. Kainuma, K. Riahi, J. Weyant (2011). A special issue on the RCPs. Climatic Change, 109(1), pp. 1-4, doi: http://dx.doi.org/10.1007/s10584-011-0157-y.)
  265. Van Vuuren et al., 2011e (D. P. van Vuuren, M. Isaac, Z. W. Kundzewicz, N. Arnell, T. Barker, P. Criqui, F. Berkhout, H. Hilderink, J. Hinkel, A. Hof, A. Kitous, T. Kram, R. Mechler, S. Scrieciu (2011). The use of scenarios as the basis for combined assessment of climate change mitigation and adaptation. Global Environmental Change, 21(2), pp. 575-591, doi: http://dx.doi.org/10.1016/j.gloenvcha.2010.11.003.)
  266. Van Vuuren et al., 2011f (D. P. van Vuuren, J. Lowe, E. Stehfest, L. Gohar, A. F. Hof, C. Hope, R. Warren, M. Meinshausen, G. K. Plattner (2011). How well do integrated assessment models simulate climate change?. Climatic Change, 104(2), pp. 255-285, doi: http://dx.doi.org/10.1007/s10584-009-9764-2.)
  267. Van Vuuren et al., 2012b (D. P. Van Vuuren, L. Batlle Bayer, C. Chuwah, L. Ganzeveld, W. Hazeleger, B. Van Den Hurk, T. Van Noije, B. Oneill, B. J. Strengers (2012). A comprehensive view on climate change: Coupling of earth system and integrated assessment models. Environmental Research Letters, 7(2), doi: http://dx.doi.org/10.1088/1748-9326/7/2/024012.)
  268. Van Vuuren et al., 2012c (D. P. van Vuuren, M. T. J. Kok, B. Girod, P. L. Lucas, B. de Vries (2012). Scenarios in Global Environmental Assessments: Key characteristics and lessons for future use. Global Environmental Change, 22(4), pp. 884-895, doi: http://dx.doi.org/10.1016/j.gloenvcha.2012.06.001.)
  269. Van Vuuren et al., 2012d (D. P. van Vuuren, N. Nakicenovic, K. Riahi, A. Brew-Hammond, D. Kammen, V. Modi, M. Nilsson, K. R. Smith (2012). An energy vision: The transformation towards sustainability-interconnected challenges and solutions. Current Opinion in Environmental Sustainability, 4(1), pp. 18-34, doi: http://dx.doi.org/10.1016/j.cosust.2012.01.004.)
  270. Van Vuuren et al., 2013 (D. P. van Vuuren, S. Deetman, J. van Vliet, M. van den Berg, B. J. van Ruijven, B. Koelbl (2013). The role of negative CO2 emissions for reaching 2 °C-insights from integrated assessment modelling. Climatic Change, 118(1), pp. 15-27, doi: http://dx.doi.org/10.1007/s10584-012-0680-5.)
  271. Van Vuuren et al., 2014 (D. P. van Vuuren, E. Kriegler, B. C. O'Neill, K. L. Ebi, K. Riahi, T. R. Carter, J. Edmonds, S. Hallegatte, T. Kram, R. Mathur, H. Winkler (2014). A new scenario framework for Climate Change Research: Scenario matrix architecture. Climatic Change, 122(3), pp. 373-386, doi: http://dx.doi.org/10.1007/s10584-013-0906-1.
    Link to PBL-website: http://www.pbl.nl/en/publications/a-new-scenario-framework-for-climate-change-research-the-concept-of-shared-climate-policy-assumptions.
    )
  272. Van Vuuren et al., 2015b (D. P. van Vuuren, M. Kok, P. L. Lucas, A. G. Prins, R. Alkemade, M. van den Berg, L. Bouwman, S. van der Esch, M. Jeuken, T. Kram, E. Stehfest (2015). Pathways to achieve a set of ambitious global sustainability objectives by 2050: Explorations using the IMAGE integrated assessment model. Technological Forecasting and Social Change, 98, pp. 303-323, doi: http://dx.doi.org/10.1016/j.techfore.2015.03.005.)
  273. Van Vuuren et al., 2016a (D. P. Van Vuuren, P. L. Lucas, T. Häyhä, S. E. Cornell, M. Stafford-Smith (2016). Horses for courses: Analytical tools to explore planetary boundaries. Earth System Dynamics, 7(1), pp. 267-279, doi: http://dx.doi.org/10.5194/esd-7-267-2016.)
  274. Van Vuuren et al., 2016b (D. P. Van Vuuren, H. Van Soest, K. Riahi, L. Clarke, V. Krey, E. Kriegler, J. Rogelj, M. Schaeffer, M. Tavoni (2016). Carbon budgets and energy transition pathways. Environmental Research Letters, 11(7), doi: http://dx.doi.org/10.1088/1748-9326/11/7/075002.)
  275. Van Vuuren et al., 2017a (D. P. van Vuuren, K. Riahi, K. Calvin, R. Dellink, J. Emmerling, S. Fujimori, S. Kc, E. Kriegler, B. O'Neill (2017). The Shared Socio-economic Pathways: Trajectories for human development and global environmental change. Global Environmental Change, 42, pp. 148-152, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.10.009.)
  276. Van Vuuren et al., 2017c (D.P. van Vuuren, O.Y. Edelenbosch, D.L. McCollum, K. Riahi (2017). A special issue on model-based long-term transport scenarios: Model comparison and new methodological developments to improve energy and climate policy analysis. Transportation Research Part D: Transport and Environment, 55, pp. 277-280, doi: http://dx.doi.org/10.1016/j.trd.2017.05.003.)
  277. Van Zeist et al., 2020 (W.-J. van Zeist, E. Stehfest, J.C. Doelman, H. Valin, K. Calvin, S. Fujimori, T. Hasegawa, P. Havlik, F. Humpenöder, P. Kyle, H. Lotze-Campen, D. Mason-D'Croz, H. van Meijl, A. Popp, T. B. Sulser, A. Tabeau, W. Verhagen, K. Wiebe (2020). Are scenario projections overly optimistic about future yield progress?. Global Environmental Change, 64, doi: http://dx.doi.org/https://doi.org/10.1016/j.gloenvcha.2020.102120.)
  278. Van der Esch et al., 2021 (Stefan van der Esch, Annelies Sewell, Michel Bakkenes, Ezra Berkhout, Jonathan Doelman, Elke Stehfest, Christoph Langhans, Arno Bouwman, Ben ten Brink (2021). The global potential for land restoration: Scenarios for the Global Land Outlook 2, PBL, PBL, Den Haag. Link to PBL-website: https://www.pbl.nl/en/publications/the-global-potential-for-land-restoration-scenarios-for-the-global-land-outlook-2.)
  279. Vaughan et al., 2018 (N.E. Vaughan, C. Gough, S. Mander, E.W. Littleton, A. Welfle, D.E.H.J. Gernaat, D.P. Van Vuuren (2018). Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environmental Research Letters, 13(4), doi: http://dx.doi.org/10.1088/1748-9326/aaaa02.)
  280. Verburg et al., 2013 (P. H. Verburg, S. van Asselen, E. H. van der Zanden, E. Stehfest (2013). The representation of landscapes in global scale assessments of environmental change. Landscape Ecology, 28(6), pp. 1067-1080, doi: http://dx.doi.org/10.1007/s10980-012-9745-0.
    Link to PBL-website: http://www.pbl.nl/en/publications/2012/the-representation-of-landscapes-in-global-scale-assessments-of-environmental-change.
    )
  281. Vermaat et al., 2016 (J. E. Vermaat, F. A. Hellmann, A. J. A. van Teeffelen, J. van Minnen, R. Alkemade, R. Billeter, C. Beierkuhnlein, L. Boitani, M. Cabeza, C. K. Feld, B. Huntley, J. Paterson, M. F. WallisDeVries (2016). Differentiating the effects of climate and land use change on European biodiversity: A scenario analysis. AMBIO, pp. 1-14, doi: http://dx.doi.org/10.1007/s13280-016-0840-3.)
  282. Visconti et al., 2016 (P. Visconti, M. Bakkenes, D. Baisero, T. Brooks, S. H. M. Butchart, L. Joppa, R. Alkemade, M. Di Marco, L. Santini, M. Hoffmann, L. Maiorano, R. L. Pressey, A. Arponen, L. Boitani, A. E. Reside, D. P. van Vuuren, C. Rondinini (2016). Projecting Global Biodiversity Indicators under Future Development Scenarios. Conservation Letters, 9(1), pp. 5-13, doi: http://dx.doi.org/10.1111/conl.12159.)
  283. Visser et al., 2018 (H. Visser, S. Dangendorf, D.P. Van Vuuren, B. Bregman, A.C. Petersen (2018). Signal detection in global mean temperatures after "Paris": An uncertainty and sensitivity analysis. Climate of the Past, 14(2), pp. 139-155, doi: http://dx.doi.org/10.5194/cp-14-139-2018.)
  284. Vrontisi et al., 2018 (Z. Vrontisi, G. Luderer, B. Saveyn, K. Keramidas, A.R. Lara, L. Baumstark, C. Bertram, H.S. De Boer, L. Drouet, K. Fragkiadakis, O. Fricko, S. Fujimori, C. Guivarch, A. Kitous, V. Krey, E. Kriegler, E.Ó. Broin, L. Paroussos, D. Van Vuuren (2018). Enhancing global climate policy ambition towards a 1.5 °c stabilization: A short-term multi-model assessment. Environmental Research Letters, 13(4), doi: http://dx.doi.org/10.1088/1748-9326/aab53e.)
  285. Walsh et al., 2017 (B. Walsh, P. Ciais, I.A. Janssens, J. Peñuelas, K. Riahi, F. Rydzak, D.P. Van Vuuren, M. Obersteiner (2017). Pathways for balancing CO2 emissions and sinks. Nature Communications, 8, doi: http://dx.doi.org/10.1038/ncomms14856.)
  286. Wang, 2014 (Lijun Wang (2014). Energy efficiency technologies for sustainable food processing. Energy Efficiency, 7, pp. 791–810, doi: http://dx.doi.org/https://doi.org/10.1007/s12053-014-9256-8.)
  287. Wicke et al., 2012 (B. Wicke, P. Verweij, H. Van Meijl, D. P. Van Vuuren, A. P. C. Faaij (2012). Indirect land use change: Review of existing models and strategies for mitigation. Biofuels, 3(1), pp. 87-100, doi: http://dx.doi.org/10.4155/bfs.11.154.)
  288. Wicke et al., 2015 (B. Wicke, F. van der Hilst, V. Daioglou, M. Banse, T. Beringer, S. Gerssen-Gondelach, S. Heijnen, D. Karssenberg, D. Laborde, M. Lippe, H. van Meijl, A. Nassar, J. Powell, A. G. Prins, S. N. K. Rose, E. M. W. Smeets, E. Stehfest, W. E. Tyner, J. A. Verstegen, H. Valin, D. P. van Vuuren, S. Yeh, A. P. C. Faaij (2015). Model collaboration for the improved assessment of biomass supply, demand, and impacts. GCB Bioenergy, 7(3), pp. 422-437, doi: http://dx.doi.org/10.1111/gcbb.12176.)
  289. Winsemius et al., 2016 (H. C. Winsemius, J. C. J. H. Aerts, L. P. H. Van Beek, M. F. P. Bierkens, A. Bouwman, B. Jongman, J. C. J. Kwadijk, W. Ligtvoet, P. L. Lucas, D. P. Van Vuuren, P. J. Ward (2016). Global drivers of future river flood risk. Nature Climate Change, 6(4), pp. 381-385, doi: http://dx.doi.org/10.1038/nclimate2893.)
  290. Wollenberg et al., 2016 (E. Wollenberg, M. Richards, P. Smith, P. Havlík, M. Obersteiner, F. N. Tubiello, M. Herold, P. Gerber, S. Carter, A. Reisinger, D. P. van Vuuren, A. Dickie, H. Neufeldt, B. O. Sander, R. Wassmann, R. Sommer, J. E. Amonette, A. Falcucci, M. Herrero, C. Opio, R. M. Roman-Cuesta, E. Stehfest, H. Westhoek, I. Ortiz-Monasterio, T. Sapkota, M. C. Rufino, P. K. Thornton, L. Verchot, P. C. West, J. F. Soussana, T. Baedeker, M. Sadler, S. Vermeulen, B. M. Campbell (2016). Reducing emissions from agriculture to meet the 2 °C target. Global Change Biology, 22(12), pp. 3859-3864, doi: http://dx.doi.org/10.1111/gcb.13340.)
  291. World Bank, 2011 (World Bank (2011). World development indicators.Access date: 2010-10-10.URL: http://data.worldbank.org/data-catalog/world-development-indicators/wdi-2010)

View (previous 750 | next 750) (20 | 50 | 100 | 250 | 500)