Browse data: Reference

Jump to navigation Jump to search
Reference > Period : 2011-2015 or 2016 up to today

Click on one or more items below to narrow your results.

Author:
Period: (Click arrow to add another value)

Showing below up to 229 results in range #1 to #229.

View (previous 750 | next 750) (20 | 50 | 100 | 250 | 500)

  1. ADVANCE publications (ADVANCE project team (2014). ADVANCE publications.URL: http://fp7-advance.eu/content/publications-scientific-reports)
  2. Admiraal et al., 2016 (A. K. Admiraal, A. F. Hof, M. G. J. den Elzen, D. P. van Vuuren (2016). Costs and benefits of differences in the timing of greenhouse gas emission reductions. Mitigation and Adaptation Strategies for Global Change, 21(8), pp. 1165-1179, doi: http://dx.doi.org/10.1007/s11027-015-9641-4.
    Link to PBL-website: http://www.pbl.nl/en/publications/costs-and-benefits-of-differences-in-the-timing-of-greenhouse-gas-emission-reductions.
    )
  3. Aguiar et al., 2016 (Angel Aguiar, Badri Narayanan, Robert McDougall (2016). An Overview of the GTAP 9 Data Base. Journal of Global Economic Analysis, 1(1), doi: http://dx.doi.org/https://doi.org/10.21642/JGEA.010103AF.)
  4. Alexandratos and Bruinsma, 2012 (Nikos Alexandratos, J. Bruinsma (2012). World agriculture towards 2030/2050: the 2012 revision, FAO, Food and Agriculture Organization of the United Nations(URL: http://www.fao.org/economic/esa).)
  5. Alkemade et al., 2011a (R. Alkemade, M. Bakkenes, B. Eickhout (2011). Towards a general relationship between climate change and biodiversity: an example for plant species in Europe. Regional Environmental Change, 11(Suppl. 1), pp. 143-150, doi: http://dx.doi.org/10.1007/s10113-010-0161-1.
    Link to PBL-website: http://www.pbl.nl/en/publications/2010/towards-a-general-relationship-between-climate-change-and-biodiversity-an-example-for-plant-species-in-europe.
    )
  6. Alkemade et al., 2011b (Alkemade, R., Janse, J.H., Van Rooij, W., Trisurat, Y. (2011). Applying GLOBIO at different geographical levels. In: Trisurat, Y., Shrestha, R.P., Alkemade, R. (eds.), Land Use, Climate change and biodiversity modeling: perspectives and applications. IGI Global, Hershey (PA), USA, pp. 150-170.)
  7. Alkemade et al., 2012 (R. Alkemade, R.S. Reid, M. Van den Berg, J. De leeuw, M. Jeuken (2012). Assessing the impact of livestock production on biodiversity in rangeland ecosystems. Proceedings of the National Academy of Sciences of the United States of America (PNAS)(Early edition), doi: http://dx.doi.org/10.1073/pnas.1011013108.
    Link to PBL-website: http://www.pbl.nl/en/publications/2012/assessing-the-impacts-of-livestock-production-on-biodiversity-in-rangeland-ecosystems.
    )
  8. Arets et al., 2011 (E.J.M.M. Arets, P.J. van der Meer, C.C. Verwer, G.M. Hengeveld, G.W. Tolkamp, G.J. Nabuurs, M. van Oorschot (2011). Global wood production : assessment of industrial round wood supply from forest management systems in different global regions, Alterra Wageningen UR.)
  9. Bagstad et al., 2013 (K.J. Bagstad, G.W. Johnson, B. Voigt, F. Villa (2013). Spatial dynamics of ecosystm service flows: A comprehensive approach to quntifying actual services. Ecosystem services, 4, pp. 117-125.)
  10. Ballantyne et al., 2012 (A. P. Ballantyne, C. B. Alden, J. B. Miller, P. P. Tans, J. W. C. White (2012). Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488, pp. 70-72, doi: http://dx.doi.org/10.1038/nature11299.)
  11. Barredo et al., 2012 (J. I. Barredo, D. Saurí, M. C. Llasat (2012). Assessing trends in insured losses from floods in Spain 1971-2008. Natural Hazards and Earth System Sciences, 12(5), pp. 1723-1729.)
  12. Beringer et al., 2011 (T. Beringer, W. Lucht, S. Schaphoff (2011). Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Global Change Biology Bioenergy, 3(4), pp. 299-312.)
  13. Beusen et al., 2014 (A.H.W. Beusen, L.P.H. Van Beek, A.F. Bouwman, J.J. Middelburg (2014). Exploring changes in nitrogen and phosphorus biogeochemistry in global rivers in the twentieth century. In: A.H.W. Beusen (eds.), Transport of nutriens from land to sea: Global modeling approaches and uncertainty analyses.)
  14. Beusen et al., 2015 (A. H. W. Beusen, L. P. H. Van Beek, A. F. Bouwman, J. M. Mogollón, J. J. Middelburg (2015). Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water - Description of IMAGE-GNM and analysis of performance. Geoscientific Model Development, 8(12), pp. 4045-4067, doi: http://dx.doi.org/10.5194/gmd-8-4045-2015.)
  15. Beusen et al., 2016 (A. H. W. Beusen, A. F. Bouwman, L. P. H. Van Beek, J. M. Mogollón, J. J. Middelburg (2016). Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences, 13(8), pp. 2441-2451, doi: http://dx.doi.org/10.5194/bg-13-2441-2016.)
  16. Beusen, 2014 (Beusen A.H.W. (2014). Transport of nutriens from land to sea: Global modeling approaches and uncertainty analyses.Ph.D thesis.Utrecht University.The Netherlands.URL: http://dspace.library.uu.nl/handle/1874/298665)
  17. Biemans et al., 2011 (H Biemans, I Haddeland, P Kabat, F Ludwig, RWA Hutjes, J Heinke, W Von Bloh, D Gerten (2011). Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resources Research, 47(3), pp. W03509, doi: http://dx.doi.org/10.1029/2009WR008929.)
  18. Biemans et al., 2013 (H. Biemans, L.H. Speelman, F. Ludwig, E.J. Moors, A.J. Wiltshire, P. Kumar, D. Gerten, P. Kabat (2013). Future water resources for food production in five South Asian river basins and potential for adaptation — A modeling study. Science of The Total Environment, 468–469(Supplement), pp. S117-S131, doi: http://dx.doi.org/10.1016/j.scitotenv.2013.05.092.)
  19. Biemans, 2012 (H. Biemans (2012). Water constraints on future food production.Earth System Science.Ph.D thesis.Wageningen University.The Netherlands.)
  20. Bijl et al., 2016 (D. L. Bijl, P. W. Bogaart, T. Kram, B. J. M. de Vries, D. P. van Vuuren (2016). Long-term water demand for electricity, industry and households. Environmental Science and Policy, 55, pp. 75-86, doi: http://dx.doi.org/10.1016/j.envsci.2015.09.005.)
  21. Bijl et al., 2017 (D.L. Bijl, P.W. Bogaart, S.C. Dekker, E. Stehfest, B.J.M. de Vries, D.P. van Vuuren (2017). A physically-based model of long-term food demand. Global Environmental Change, 45, pp. 47-62, doi: http://dx.doi.org/10.1016/j.gloenvcha.2017.04.003.)
  22. Bijl et al., 2018a (D.L. Bijl, H. Biemans, P.W. Bogaart, S.C. Dekker, J.C. Doelman, E. Stehfest, D.P. van Vuuren (2018). A Global Analysis of Future Water Deficit Based On Different Allocation Mechanisms. Water Resources Research, 54(8), pp. 5803-5824, doi: http://dx.doi.org/10.1029/2017WR021688.)
  23. Bindraban et al., 2012 (P.S. Bindraban, M. van der Velde, L. Ye, M. van den Berg, S. Materechera, D. I. Kiba, L. Tamene, K. V. Ragnarsdóttir, R. Jongschaap, M. Hoogmoed, W. Hoogmoed, C. van Beek, G. van Lynden (2012). Assessing the impact of soil degradation on food production. Current Opinion in Environmental Sustainability, 4(5), pp. 468-488, doi: http://dx.doi.org/10.1016/j.cosust.2012.09.015.)
  24. Bouwman et al., 2011 (A. F. Bouwman, M. Paw?owski, C. Liu, A. H. W. Beusen, S. E. Shumway, P. M. Glibert, C. C. Overbeek (2011). Global Hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and seaweed aquaculture. Reviews in Fisheries Science, 19(4), pp. 331-357, doi: http://dx.doi.org/10.1080/10641262.2011.603849.)
  25. Bouwman et al., 2013b (L. Bouwman, K. K. Goldewijk, K. W. Van Der Hoek, A. H. W. Beusen, D. P. Van Vuuren, J. Willems, M. C. Rufino, E. Stehfest (2013). Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proceedings of the National Academy of Sciences of the United States of America, 110(52), pp. 20882-20887, doi: http://dx.doi.org/10.1073/pnas.1012878108.
    Link to PBL-website: http://www.pbl.nl/en/publications/2011/exploring-global-changes-in-nitrogen-and-phosphorus-cycles-in-agriculture-induced-by-livestock-production-over.
    )
  26. Bouwman et al., 2013c (A. F. Bouwman, A. H. W. Beusen, C. C. Overbeek, D. P. Bureau, M. Pawlowski, P. M. Glibert (2013). Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Reviews in Fisheries Science, 21(2), pp. 112-156, doi: http://dx.doi.org/10.1080/10641262.2013.790340.)
  27. Braakhekke et al., 2019 (Braakhekke, M. C., Doelman, J. C., Baas, P., Müller, C., Schaphoff, S., Stehfest, E., van Vuuren, D. P. (2019). Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model. Earth System Dynamics, 10(4), pp. 617-630, doi: http://dx.doi.org/https://doi.org/10.5194/esd-10-617-2019.
    Link to PBL-website: https://www.pbl.nl/en/publications/modeling-forest-plantations-for-carbon-uptake-with-the-lpjml-dynamic-global-vegetation-model.
    )
  28. Braspenning Radu et al., 2016 (O. Braspenning Radu, M. van den Berg, Z. Klimont, S. Deetman, G. Janssens-Maenhout, M. Muntean, C. Heyes, F. Dentener, D. P. van Vuuren (2016). Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios. Atmospheric Environment, 140, pp. 577-591, doi: http://dx.doi.org/10.1016/j.atmosenv.2016.05.021.
    Link to PBL-website: http://www.pbl.nl/en/publications/exploring-synergies-between-climate-and-air-quality-policies-using-long-term-global-and-regional-emission-scenarios.
    )
  29. Burkhard et al., 2012 (B. Burkhard, F. Kroll, S. Nedkov, F. Müller (2012). Mapping ecosystem service supply, demand and budgets. Ecological indicators, 21, pp. 17-29.)
  30. Cengic et al., 2020 (Mirza Čengić, Jasmijn Rost, Daniela Remenska, Jan H. Janse, Mark A. J. Huijbregts, and Aafke M. Schipper (2020). On the importance of predictor choice, modelling technique, and number of pseudo‐absences for bioclimatic envelope model performance. Ecology and Evolution, 10(21), pp. 12307–12317, doi: http://dx.doi.org/10.1002/ece3.6859.)
  31. Chateau et al., 2013 (J. Chateau, R. Dellink, E. Lanzi, B. Magné (2013). An overview of the OECD ENV-Linkages model - version 3, OECD Environment Working paper 42, OECD Publishing, OECD, Paris.)
  32. Chuwah et al., 2015 (C. Chuwah, T. van Noije, D. P. van Vuuren, E. Stehfest, W. Hazeleger (2015). Global impacts of surface ozone changes on crop yields and land use. Atmospheric Environment, 106, pp. 11-23, doi: http://dx.doi.org/10.1016/j.atmosenv.2015.01.062.
    Link to PBL-website: http://www.pbl.nl/en/publications/global-impacts-of-surface-ozone-changes-on-crop-yields-and-land-use.
    )
  33. Crossman et al., 2013 (N.D. Crossman, B. Burkhard, S. Nedkov, L. Willemen, K. Petz, I. Palomo, E.G. Drakou, B. Martín-Lopez, T. McPhearson, K. Boyanova, R. Alkemade, B. Egoh, M.B. Bunbar, J. Maes (2013). A blueprint for mapping and modelling ecosystem services. Ecosystem services, 4, pp. 4-14.)
  34. DEA, 2018 (Danish Energy Agency (2018). Note on technology costs for offshore wind farms and the background for updating CAPEX and OPEX in the technology catalogue datasheets, Danish Ministry of Energy, Utilities and Climate(URL: https://ens.dk/sites/ens.dk/files/Analyser/havvindsnotat_translation_eng_final.pdf).)
  35. Dagnachew et al., 2018 (A.G. Dagnachew, P.L. Lucas, A.F. Hof, D.P. van Vuuren (2018). Trade-offs and synergies between universal electricity access and climate change mitigation in Sub-Saharan Africa. Energy Policy, 114, pp. 355-366, doi: http://dx.doi.org/10.1016/j.enpol.2017.12.023.)
  36. Dagnachew et al., 2020 (Anteneh G.Dagnachew, Andries F.Hof, Paul L.Lucas, Detlef P.van Vuuren (2020). Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits. Energy, 192, doi: http://dx.doi.org/https://doi.org/10.1016/j.energy.2019.116641.)
  37. Daioglou et al., 2012 (V. Daioglou, B. J. van Ruijven, D. P. van Vuuren (2012). Model projections for household energy use in developing countries. Energy, 37(1), pp. 601-615, doi: http://dx.doi.org/10.1016/j.energy.2011.10.044.)
  38. Daioglou et al., 2014 (V. Daioglou, A. P. C. Faaij, D. Saygin, M. K. Patel, B. Wicke, D. P. Van Vuuren (2014). Energy demand and emissions of the non-energy sector. Energy and Environmental Science, 7(2), pp. 482-498, doi: http://dx.doi.org/10.1039/c3ee42667j.
    Link to PBL-website: http://www.pbl.nl/en/publications/energy-demand-and-emissions-of-the-non-energy-sector.
    )
  39. Daioglou et al., 2019 (V. Daioglou, J.C. Doelman, B. Wicke, A. Faaij, D.P. van Vuuren (2019). Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Global Environmental Change, 54, pp. 88-101, doi: http://dx.doi.org/10.1016/j.gloenvcha.2018.11.012.)
  40. Daioglou et al., 2022 (Vassilis Daioglou, Efstratios Mikropoulos, David Gernaat, Detlef P.van Vuuren (2022). Efficiency improvement and technology choice for energy and emission reductions of the residential sector. Energy, 243, doi: http://dx.doi.org/https://doi.org/10.1016/j.energy.2021.122994.)
  41. Davies et al., 2013 (Davies, E.G.R., Kyle P. and Edmonds J.A. (2013). An integrated assessment of global and regional water demands for electricity generation to 2095.. Advances in Water Resources, 52, pp. 296-313, doi: http://dx.doi.org/DOI: 10.1016/j.advwatres.2012.11.020.)
  42. De Boer and Van Vuuren, 2017 (H.S. de Boer and D.P. van Vuuren (2017). Representation of variable renewable energy source in TIMER, an aggregated energy system simulation model. Energy Economics, 64, pp. 600-611, doi: http://dx.doi.org/http://doi.org/10.1016/j.eneco.2016.12.006.
    Link to PBL-website: http://www.pbl.nl/en/publications/representation-of-variable-renewable-energy-sources-in-timer-an-aggregated-energy-system-simulation-model.
    )
  43. De Groot et al., 2012 (R.S. De Groot, L. Brander, S. van der Ploeg, R. Costanza, F. Bernard, L. Braat, M. Christie, N.D. Crossman, A. Ghermandi, L. Hein, S. Hussain, P. Kumar, A. McVittie, R. Portela, L.C. Rodriguez, P. ten Brink, P. van Beukering (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem services, 1(1), pp. 50-61.)
  44. De Vos et al., 2021 (Lotte de Vos, Hester Biemans, Jonathan C Doelman, Elke Stehfest and Detlef P van Vuuren (2021). Trade-offs between water needs for food, utilities, and the environment—a nexus quantification at different scales. Environmental Research Letters, 16(11), doi: http://dx.doi.org/https://doi.org/10.1088/1748-9326/ac2b5e.)
  45. Dellink et al., 2017 (R. Dellink, J. Chateau, E. Lanzi, B. Magné (2017). Long-term economic growth projections in the Shared Socioeconomic Pathways.. Global Environmental Change, 42, pp. 200-214, doi: http://dx.doi.org/10.1016/j.gloenvcha.2015.06.004.)
  46. Den Elzen et al., 2011a (M. G. J. Den Elzen, A. F. Hof, A. Mendoza Beltran, G. Grassi, M. Roelfsema, B. van Ruijven, J. van Vliet, D. P. van Vuuren (2011). The Copenhagen Accord: Abatement costs and carbon prices resulting from the submissions. Environmental Science and Policy, 14(1), pp. 28-39, doi: http://dx.doi.org/10.1016/j.envsci.2010.10.010.
    Link to PBL-website: http://www.pbl.nl/en/publications/2011/The-Copenhagen-Accord-abatement-costs-and-carbon-prices-resulting-from-the-submissions.
    )
  47. Den Elzen et al., 2011b (M. G. J. den Elzen, A. F. Hof, M. Roelfsema (2011). . Global Environmental Change, 21(2), pp. 733-743, doi: http://dx.doi.org/10.1016/j.gloenvcha.2011.01.006.
    Link to PBL-website: http://www.pbl.nl/en/publications/2011/the-emissions-gap-between-the-copenhagen-pledges-and-the-2-%C2%B0c-climate-goal-options-for-closing-and-risks-that-.
    )
  48. Den Elzen et al., 2012a (M.G.J. den Elzen, A. Hof, A. Mendoza Beltrán, B. Van Ruijven, J. Van Vliet (2012). Implications of long-term global and developed country reduction targets for developing countries. Mitigation and Adaptation of Strategies for Global Change, 18(4), pp. 491-512.)
  49. Den Elzen et al., 2012b (M. G. J. den Elzen, M. Meinshausen, A. F. Hof (2012). . Climatic Change, 114(2), pp. 401-408, doi: http://dx.doi.org/10.1007/s10584-012-0530-5.)
  50. Den Elzen et al., 2012c (M.G.J. den Elzen, M. Roelfsema, A.F. Hof, H. Böttcher, G. Grassi (2012). Analysing the emission gap between pledged emission reductions under the Cancún Agreements and the 2°C climate target, PBL Netherlands Environmental Assessment Agency, Bilthoven, the Netherlands. Link to PBL-website: http://www.pbl.nl/en/publicaties/2012/analysing-the-emission-gap-between-pledged-emission-reductions-under-the-cancun-agreements.)
  51. Den Elzen et al., 2013 (M. G. J. Den Elzen, A. F. Hof, M. Roelfsema (2013). Analysing the greenhouse gas emission reductions of the mitigation action plans by non-Annex I countries by 2020. Energy Policy, 56(56), pp. 633-643, doi: http://dx.doi.org/10.1016/j.enpol.2013.01.035.
    Link to PBL-website: http://www.pbl.nl/en/publications/analysing-the-greenhouse-gas-emission-reductions-of-the-mitigation-action-plans-by-non-annex-i-countries-by-2020.
    )
  52. Den Elzen et al., 2015a (den Elzen, M.G.J., Fekete, H., Admiraal, A., Forsell, N., Höhne, N., Korosuo, A., Roelfsema, M., van Soest, H., Wouters, K., Day, T., Hagemann, M., Hof, A.F (2015). Enhanced policy scenarios for major emitting countries. Analysis of current and planned climate policies, and selected enhanced mitigation measure. Link to PBL-website: http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2015-enhanced-policy-scenarios-for-major-emitting-countries_1631.pdf.)
  53. Den Elzen et al., 2016 (M. den Elzen, A. Admiraal, M. Roelfsema, H. van Soest, A. F. Hof, N. Forsell (2016). Contribution of the G20 economies to the global impact of the Paris agreement climate proposals. Climatic Change, 137(3-4), pp. 655-665, doi: http://dx.doi.org/10.1007/s10584-016-1700-7.
    Link to PBL-website: http://www.pbl.nl/en/publications/contribution-of-the-g20-economies-to-the-global-impact-of-the-paris-agreement-climate-proposals.
    )
  54. Doelman et al., 2018 (J.C. Doelman, E. Stehfest, A. Tabeau, H. van Meijl, L. Lassaletta, K. Neumann-Hermans, D.E.H.J. Gernaat, M. Harmsen, V. Daioglou, H. Biemans, S. van der Sluis, D.P. van Vuuren (2018). Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 48(January), pp. 119-135, doi: http://dx.doi.org/10.1016/j.gloenvcha.2017.11.014.
    Link to PBL-website: http://www.pbl.nl/en/publications/exploring-ssp-land-use-dynamics-using-the-image-model-regional-and-gridded-scenarios-of-land-use-change-and-land-ba.
    )
  55. Doelman et al., 2019 (Doelman, Jonathan C, Stehfest, Elke, van Vuuren, Detlef P, Tabeau, Andrzej, Hof, Andries F, Braakhekke, Maarten C, Gernaat, David EHJ, van den Berg, Maarten, van Zeist, Willem‐Jan, Daioglou, Vassilis (2019). Afforestation for climate change mitigation: Potentials, risks and trade-offs. Global Change Biology, 26(3), pp. 1576-1591, doi: http://dx.doi.org/https://doi.org/10.1111/gcb.14887.
    Link to PBL-website: https://www.pbl.nl/publications/afforestation-for-climate-change-mitigation-potentials-risks-and-trade-offs.
    )
  56. Doelman et al., 2020b (Jonathan C. Doelman, Elke Stehfest, Andrzej Tabeau, Hans van Meijl, Luis Lassaletta, David E.H.J. Gernaat, Kathleen Hermans, Mathijs Harmsen, Vassilis Daioglou, Hester Biemans, Sietske van der Sluis, Detlef P.van Vuuren (2020). Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 48, pp. 119-135, doi: http://dx.doi.org/https://doi.org/10.1016/j.gloenvcha.2017.11.014.)
  57. EC, 2012 (EC (2012). Access date: 2013.URL: http://ec.europa.eu/environment/nature/biodiversity/comm2006/2020.htm)
  58. EC-JRC/PBL, 2016 (EC-JRC/PBL (2016). European Commission, Joint Research Centre (EC-JRC)/Netherlands Environmental Assessment Agency (PBL). Emissions Database for Global Atmospheric Research (EDGAR), release EDGAR v4.3.2 (1970 - 2012) of March 2016, http://edgar.jrc.ec.europa.eu.)
  59. ESA, 2017 (European Space Agency (2017). Climate Change Initiative (ESA-CCI) V2.0.7.European Space Agency.URL: https://maps.elie.ucl.ac.be/CCI/viewer/download.php)
  60. Ebi et al., 2014a (K. Ebi, S. Hallegatte, T. Kram, N. Arnell, T. Carter, J. Edmonds, E. Kriegler, R. Mathur, B. O'Neill, K. Riahi, H. Winkler, D. van Vuuren, T. Zwickel (2014). A new scenario framework for climate change research: background, process, and future directions. Climatic Change, 122(3), pp. 363-372, doi: http://dx.doi.org/10.1007/s10584-013-0912-3.)
  61. Edelenbosch et al., 2017b (O. Y. Edelenbosch, D. L. McCollum, D. P. van Vuuren, C. Bertram, S. Carrara, H. Daly, S. Fujimori, A. Kitous, P. Kyle, E. Ó Broin, P. Karkatsoulis, F. Sano (2016). Decomposing passenger transport futures: Comparing results of global integrated assessment models. Transportation Research Part D: Transport and Environment, doi: http://dx.doi.org/10.1016/j.trd.2016.07.003.)
  62. Egoh et al., 2012 (B.N. Egoh, P.J. O'Farrell, A. Charef, L.J. Gurney, T. Koellner, H.N. Abi, M. Egoh, L. Willemen (2012). An african account of ecosystem service provision: Use, threats and policy options for sustainable livelihoods. Ecosystem services, 2, pp. 71-81.)
  63. FAO, 2011a (FAO (2011). The state of the world's land and water resources for food and agriculture (SOLAW) - Managing systems at risk, Food and Agriculture Organization of the United Nations / Earthscan, Rome / London, URL: http://www.fao.org/nr/solaw/en/.)
  64. FAO, 2012a (FAO (2012). FAOSTAT database collections.Food and Agriculture Organization of the United Nations.URL: http://faostat.fao.org)
  65. FAO, 2012b (FAO (2012). FRA 2015, Forest Futures Methodology, FAO, Rome(URL: http://www.fao.org/docrep/017/aq073e/aq073e00.pdf).)
  66. FAO, 2013a (FAO (2013). FAOSTAT database collections.Food and Agriculture Organization of the United Nations.Rome.Access date: 2013-04-22.URL: http://faostat.fao.org)
  67. FAO, 2013b (FAO (2013). Hunger portal.Access date: 2013-09-12.URL: http://www.fao.org/hunger/en/)
  68. FAO, 2015 (FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (2016). Global Forest Resources Assessment 2015, FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, Rome(URL: https://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/).)
  69. FAO, 2020 (Food and Agriculture Organization of the United Nations (2020). Global Forest Resources Assessment 2020 (FRA 2020), Food and Agriculture Organization of the United Nations, Food and Agriculture Organization of the United Nations, Rome(URL: https://doi.org/10.4060/ca9825en).)
  70. Foley et al., 2011 (J.A. Foley, N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C. O'Connell, D.K. Ray, P.C. West, C. Balzer, E.M. Bennett, Carpenter S.R., J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, D.P.M. Zaks (2011). Solutions for a cultivated planet. Nature, 478, pp. 337-342.)
  71. Frank et al., 2019 (S. Frank, P. Havlík, E. Stehfest, H. van Meijl, P. Witzke, I. Pérez-Domínguez, M. van Dijk, J.C. Doelman, T. Fellmann, J.F.L. Koopman, A. Tabeau, H. Valin (2019). Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change, 9(1), pp. 66-72, doi: http://dx.doi.org/10.1038/s41558-018-0358-8.)
  72. Friedlingstein et al., 2019 (Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle (2019). Global Carbon Budget 2019. Earth System Science Data, 11, pp. 1783–1838, doi: http://dx.doi.org/https://doi.org/10.5194/essd-11-1783-2019.)
  73. GEA, 2012 (Writing Team GEA (2012). Global Energy Assessment; Toward a Sustainable Future, Cambridge University Press, Cambridge, UK.)
  74. Garcia-Nieto et al., 2013 (A.P. Garcia-Nieto, M. Garcia-Llorente, I. Iniesta-Arandia, B. Martin-Lopez (2013). Mapping forest ecosystem services: From providing units to beneficiaries. Ecosystem services, 4, pp. 126-138.)
  75. Gernaat et al., 2014 (D. E. H. J. Gernaat, D. P. Van Vuuren, J. Van Vliet, P. Sullivan, D. J. Arent (2014). Global long-term cost dynamics of offshore wind electricity generation. Energy, 76, pp. 663-672, doi: http://dx.doi.org/10.1016/j.energy.2014.08.062.
    Link to PBL-website: http://www.pbl.nl/node/61165.
    )
  76. Gernaat et al., 2017 (D.E.H.J. Gernaat, P.W. Bogaart, D.P.V. Vuuren, H. Biemans, R. Niessink (2017). High-resolution assessment of global technical and economic hydropower potential. Nature Energy, 2(10), pp. 821-828, doi: http://dx.doi.org/10.1038/s41560-017-0006-y.)
  77. Gernaat et al., 2021 (David E. H. J. Gernaat, Harmen Sytze de Boer, Vassilis Daioglou, Seleshi G. Yalew, Christoph Müller, Detlef P. van Vuuren (2021). Climate change impacts on renewable energy supply. Nature Climate Change, 11, pp. 119-125, doi: http://dx.doi.org/https://doi.org/10.1038/s41558-020-00949-9.)
  78. Gerten et al., 2013 (D. Gerten, W. Lucht, S. Ostberg, J. Heinke, M. Kowarsch, H. Kreft, Z.W. Kundzewicz, J. Rastgooy, R. Warren, H.J. Schellnhuber (2013). Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems.. Environmental Research Letters, 8(3).)
  79. Girod et al., 2012 (B. Girod, D. P. van Vuuren, S. Deetman (2012). . Energy Policy, 45, pp. 152-166, doi: http://dx.doi.org/10.1016/j.enpol.2012.02.008.
    Link to PBL-website: http://www.pbl.nl/en/publications/2012/global-travel-within-the-2-degree-celsius-climate-target.
    )
  80. Goldewijk et al., 2017 (K.K. Goldewijk, A. Beusen, J. Doelman, E. Stehfest (2017). Anthropogenic land use estimates for the Holocene - HYDE 3.2. Earth System Science Data, 9(2), pp. 927-953, doi: http://dx.doi.org/10.5194/essd-9-927-2017.)
  81. Granier, 2011 (C. Granier (2011). Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period. Climatic Change, 109(1-2), pp. 163-190, doi: http://dx.doi.org/10.1007/s10584-011-0154-1.)
  82. Gustavsson et al., 2011 (Jenny Gustavsson, Christel Cederberg, Ulf Sonesson (2011). Global Food Losses and Food Waste. Paper presented at the Save Food Congress, doi: http://dx.doi.org/https://www.madr.ro/docs/ind-alimentara/risipa_alimentara/presentation_food_waste.pdf.)
  83. Gustavsson et al., 2013 (Jenny Gustavsson, Christel Cederberg, Ulf Sonesson, Andreas Emanuelsson (2013). The methodology of the FAO study: “Global Food Losses and Food Waste - extent, causes and prevention”, SIK - The Swedish Institute for Food and Biotechnology(URL: https://www.diva-portal.org/smash/get/diva2:944159/FULLTEXT01.pdf).)
  84. Haddeland et al., 2011 (I. Haddeland, D. B. Clark, W. Franssen, F. Ludwig, F. Voß, N. W. Arnell, N. Bertrand, M. Best, S. Folwell, D. Gerten, S. Gomes, S. N. Gosling, S. Hagemann, N. Hanasaki, R. Harding, J. Heinke, P. Kabat, S. Koirala, T. Oki, J. Polcher, T. Stacke, P. Viterbo, G. P. Weedon, P. Yeh (2011). Multimodel estimate of the global terrestrial water balance: Setup and first results. Journal of Hydrometeorology, 12(5), pp. 869-884.)
  85. Haines-Young and Potschin, 2013 (R. Haines-Young, M. Potschin (2013). Common International Classification of Ecosystems Services (CICES): Consultation on Version 4, EEA.)
  86. Hansen et al., 2013 (M.C. Hansen, P.V. Potapov, R. Moore, M. Hancher, S.A. Turubanova, A. Tyukavina, D. Thau, S.V. Stehman, S.J. Goetz, T.R. Loveland, A. Kommareddy, A. Egorov, L. P. Chini, C.O. Justice, J. R.G. Townshend (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), pp. 850-853.)
  87. Harmsen et al., 2016 (M. J. H. M. Harmsen, M. van den Berg, V. Krey, G. Luderer, A. Marcucci, J. Strefler, D. P. V. Vuuren (2016). How climate metrics affect global mitigation strategies and costs: a multi-model study. Climatic Change, 136(2), pp. 203-216, doi: http://dx.doi.org/10.1007/s10584-016-1603-7.)
  88. Harmsen et al., 2019a (Mathijs Harmsen, Detlef P. van Vuuren, Benjamin Leon Bodirsky, Jean Chateau, Olivier Durand-Lasserve, Laurent Drouet, Oliver Fricko, Shinichiro Fujimori, David E.H.J. Gernaat, Tatsuya Hanaoka, Jérôme Hilaire, Kimon Keramidas, Gunnar Luderer, Maria Cecilia P. Moura, Fuminori Sano, Steven J. Smith, Kenichi Wada (2019). The role of methane in future climate strategies: Mitigation potentials and climate impacts. Climatic Change (in press).)
  89. Harmsen et al., 2019b (Mathijs Harmsen, Oliver Fricko, Jérôme Hilaire, Detlef P. van Vuuren, Laurent Drouet, Olivier Durand-Lasserve, Shinichiro Fujimori, Kimon Keramidas, Zbigniew Klimont, Gunnar Luderer, Lara Aleluia Reis, Keywan Riahi, Fuminori Sano, Steven J. Smith (2019). Taking some heat off the NDCs? The limited potential of additional short-lived climate forcers’ mitigation. Climatic Change (under review).)
  90. Harmsen et al., 2019c (Mathijs J.H.M. Harmsen, Detlef P. van Vuuren, Dali R. Nayak, Andries F. Hof, Lena Höglund-Isaksson, Paul L. Lucas, Jens B. Nielsen, Pete Smith, Elke Stehfest (2019). Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environmental Science and Policy (under review).)
  91. Harris et al., 2013 (I. Harris, P.D. Jones, T.J. Osborn, D.H. Lister (2013). Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 dataset.. International Journal of Climatology, 34(3), pp. 623-642.)
  92. Hertel, 2011 (T.W. Hertel (2011). The global supply and demand for agricultural land in 2050: A perfect storm in the making?. American Journal of Applied Economics, 93, pp. 259-275.)
  93. Heyder et al., 2011 (U. Heyder, S. Schaphoff, D. Gerten, W. Lucht (2011). Risk of severe climate change impact on the terrestrial biosphere. Environmental Research Letters, 6(3), doi: http://dx.doi.org/10.1088/1748-9326/6/3/034036.)
  94. Hoesly et al., 2018 (Rachel M. Hoesly, Steven J. Smith, Leyang Feng, Zbigniew Klimont, Greet Janssens-Maenhout, Tyler Pitkanen, Jonathan J. Seibert, Linh Vu, Robert J. Andres, Ryan M. Bolt, Tami C. Bond, Laura Dawidowski, Nazar Kholod, June-ichi Kurokawa, Meng Li, Liang Liu, Zifeng Lu, Maria Cecilia P. Moura, Patrick R. Rourke, Qiang Zhang (2018). Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11(1), pp. 369-408, doi: http://dx.doi.org/10.5194/gmd-11-369-2018.)
  95. Hof et al., 2011 (A. F. Hof, M. G. J. den Elzen, A. Mendoza Beltran (2011). Predictability, equitability and adequacy of post-2012 international climate financing proposals. Environmental Science and Policy, 14(6), pp. 615-627, doi: http://dx.doi.org/10.1016/j.envsci.2011.05.006.
    Link to PBL-website: http://www.pbl.nl/en/publications/2011/predictability-equitability-and-adequacy-of-post-2012-international-climate-financing-proposals.
    )
  96. Hof et al., 2012 (A.F. Hof, C. Brink, A. Mendoza Beltrán, M.G.J. den Elzen (2012). Greenhouse gas emission reduction targets for 2030: Conditions for a EU target of 40%, PBL Netherlands Environmental Assessment Agency, Bilthoven, the Netherlands(URL: http://www.pbl.nl/en/publications/2012/greenhouse-gas-emission-reduction-targets-for-2030).)
  97. Hof et al., 2013 (A. F. Hof, M. G. J. den Elzen, M. Roelfsema (2013). The effect of updated pledges and business-as-usual projections, and new agreed rules on expected global greenhouse gas emissions in 2020. Environmental Science and Policy, 33, pp. 308-319, doi: http://dx.doi.org/10.1016/j.envsci.2013.06.007.
    Link to PBL-website: http://www.pbl.nl/en/publications/the-effect-of-updated-pledges-and-business-as-usual-projections-and-new-agreed-rules-on-expected-global-ghg.
    )
  98. Hof et al., 2016 (A. F. Hof, M. G. J. den Elzen, A. Mendoza Beltran (2016). The EU 40% greenhouse gas emission reduction target by 2030 in perspective. International Environmental Agreements: Politics, Law and Economics, 16(3), pp. 375-392, doi: http://dx.doi.org/10.1007/s10784-016-9317-x.
    Link to PBL-website: https://www.pbl.nl/en/publications/the-eu-40-procent-greenhouse-gas-emission-reduction-target-by-2030-in-perspective.
    )
  99. Hof et al., 2017 (A.F. Hof, M.G.J. den Elzen, A. Admiraal, M. Roelfsema, D.E.H.J. Gernaat, D.P. van Vuuren (2017). Global and regional abatement costs of Nationally Determined Contributions (NDCs) and of enhanced action to levels well below 2 °C and 1.5 °C. Environmental Science and Policy, 71, pp. 30-40, doi: http://dx.doi.org/10.1016/j.envsci.2017.02.008.)
  100. Hordijk et al., 2014 (Hordijk L., Arnell N., Gerten D., van Ittersum M., Klaassen G., Riahi K., Scharlemann J., Janssen P. (2014). International review of IMAGE 3.0, Report of the 2014 IMAGE Advisory Board, PBL Netherlands Environmental Assessment Agency, The Hague. Link to PBL-website: http://www.pbl.nl/en/publications/international-review-of-image-30.)
  101. Hurtt et al., 2011 (G. C. Hurtt, L. P. Chini, S. Frolking, R. A. Betts, J. Feddema, G. Fischer, J. P. Fisk, K. Hibbard, R. A. Houghton, A. Janetos, C. D. Jones, G. Kindermann, T. Kinoshita, K. Klein Goldewijk, K. Riahi, E. Shevliakova, S. Smith, E. Stehfest, A. Thomson, P. Thornton, D. P. van Vuuren, Y. P. Wang (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109(1), pp. 117-161, doi: http://dx.doi.org/10.1007/s10584-011-0153-2.)
  102. Hurtt et al., 2020 (George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang (2020). Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 12, pp. 5425–5464, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-13-5425-2020.)
  103. Höhne et al., 2012 (N. Höhne, N. Braun, H. Fekete, R. Brandsma, J. Larkin, M.G.J. den Elzen, M. Roelfsema, A.F. Hof, H. Böttcher (2012). Greenhouse gas emission reduction proposals and national climate policies of major economies, PBL Netherlands Environmental Assessment Agency, Bilthoven, the Netherlands.)
  104. IEA, 2012 (IEA (2012). Global Wood Pellet Industry Market and Trade Study, International Energy Agency (IEA)IEA Task 40, Paris(URL: www.data.iea.org).)
  105. IEA, 2019 (International Energy Agency (2019). The Future of Hydrogen(URL: https://www.iea.org/reports/the-future-of-hydrogen).)
  106. IEA, 2021 (IEA (2021). World Energy Outlook 2021, International Energy Agency(URL: https://www.iea.org/reports/world-energy-outlook-2021).)
  107. IIASA and FAO, 2012 (FAO IIASA (2012). Global Agro-ecological Zones (GAEZ v3.0).IIASA and FAO.URL: http://webarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/)
  108. IIASA, 2013 (IIASA (2013). SSP Database.IIASA.Access date: December 2013.URL: https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=welcome)
  109. IPCC, 2012 (IPCC (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change, C.B.FieldV. BarrosT.F. StockerD. QinD.J. DokkenK.L. EbiM.D. MastrandreaK.J. MachG.-K. PlattnerS.K. AllenM. TignorP.M. Midgley (eds.), Cambridge University Press, Cambridge, UK / New York, NY, USA.)
  110. IPCC, 2013 (IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T.F. StockerD. QinG.-K. PlattnerM. TignorS.K. AllenJ. BoschungA. NauelsY. XiaV. BexP.M. Midgley (eds.), Cambridge, United Kingdom and New York.)
  111. IPCC, 2019 (P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.) (2019). Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, IPCC(URL: https://www.ipcc.ch/site/assets/uploads/sites/4/2019/12/02_Summary-for-Policymakers_SPM.pdf).)
  112. IRENA, 2016 (IRENA (2016). REsource.International Renewable Energy Agency.URL: http://resourceirena.irena.org/)
  113. IRENA, 2020 (IRENA (2020). Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5oC climate goal, International Renewable Energy Agency(URL: https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction).)
  114. IRENA, 2022 (IRENA (2022). Statistics Time Series.International Renewable Energy Agency.URL: https://www.irena.org/Data/View-data-by-topic/Capacity-and-Generation/Statistics-Time-Series)
  115. IUCN, 2015 (International Union for Conservation of Nature (2015). Annual Report 2015, International Union for Conservation of Nature, IUCN(URL: https://portals.iucn.org/library/sites/library/files/documents/2016-020.pdf).)
  116. JRC/PBL, 2012 (JRC/PBL (2012). Emission Database for Global Atmospheric Research (EDGAR), release version 4.0.European Commission Joint Research Centre (JRC) / PBL Netherlands Environmental Assessment Agency.Access date: 2009-07-01.URL: http://edgar.jrc.ec.europa.eu/)
  117. Janse et al., submitted (J.H. Janse, J.J. Kuiper, M.J. Weijters, E.P. Westerbeek, M.H.J.L. Jeuken, R. Alkemade, J. T. A. Verhoeven (2013). GLOBIO-aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Submitted, available on request.)
  118. Jewell et al., 2016 (Jessica Jewell, Vadim Vinichenko, David McCollum, Nico Bauer, Keywan Riahi, Tino Aboumahboub, Oliver Fricko, Mathijs Harmsen, Tom Kober, Volker Krey, Giacomo Marangoni, Massimo Tavoni, Detlef P. van Vuuren, Bob van der Zwaan & Aleh Cherp (2016). Comparison and interactions between the long-term pursuit of energy independence and climate policies. Nature Energy, 1, doi: http://dx.doi.org/10.1038/nenergy.2016.73.)
  119. Jägermeyr et al., 2015 (J. Jägermeyr, D. Gerten, J. Heinke, S. Schaphoff, M. Kummu, and W. Lucht (2015). Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrology and Earth System Sciences, 19, pp. 3073–3091, doi: http://dx.doi.org/https://doi.org/10.5194/hess-19-3073-2015.)
  120. KC and Lutz, forthcoming (Samir KC, W. Lutz (2014). The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change, doi: http://dx.doi.org/10.1016/j.gloenvcha.2014.06.004.)
  121. Klein Goldewijk and Verburg, 2013 (K. Klein Goldewijk, P. H. Verburg (2013). Uncertainties in global-scale reconstructions of historical land use: An illustration using the HYDE data set. Landscape Ecology, 28(5), pp. 861-877, doi: http://dx.doi.org/10.1007/s10980-013-9877-x.
    Link to PBL-website: http://www.pbl.nl/en/publications/uncertainties-in-global-scale-reconstructions-of-historical-land-use-an-illustration-using-the-hyde-data-set.
    )
  122. Klein Goldewijk et al., 2011 (K. Klein Goldewijk, A. Beusen, G. Van Drecht, M. De Vos (2011). The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography, 20(1), pp. 73-86, doi: http://dx.doi.org/10.1111/j.1466-8238.2010.00587.x.
    Link to PBL-website: http://www.pbl.nl/en/publications/2010/The-HYDE-3.1-spatially-explicit-database-of-human-induced-global-land-use-change-over-the-past-12000-years.
    )
  123. Klein et al., 2011 ((2011). Importance of pollinators in chaninging landscapes for world crops. Proceedings of the National Academy of Sciences, 274, pp. 303-313.)
  124. Kram et al., 2012 (T Kram, K. Neumann, M. van den Berg, J. Bakkes (2012). Global integrated assessment to support EU future environment policies, PBL Netherlands Environmental Assessment Agency, The Hague.)
  125. Kuiper et al., 2014 (J.J. Kuiper, J.H. Janse, S. Teurlincx, J. T. A. Verhoeven, R. Alkemade (2014). The impact of river regulation on the biodiversity intactness of floodplain wetlands. Wetlands Ecology and Management, 22, pp. 647-658, doi: http://dx.doi.org/10.1007/s11273-014-9360-8.
    Link to PBL-website: http://www.pbl.nl/en/publications/the-impact-of-river-regulation-on-the-biodiversity-intactness-of-floodplain-wetlands.
    )
  126. Kuramochi et al., 2016 (Kuramochi, T., Höhne, N., Sterl, S., Gonzales-Zuñiga, S., Hans, F., Hagemann, M., Hernandez Legaria, E., den Elzen, M.G.J., Roelfsema, M., van Soest, H., Forsell, N., Turkovska, O. (2016). Greenhouse gas mitigation scenarios for major emitting countries: Analysis of current and planned climate policies, and mitigation pledges. Link to PBL-website: http://www.pbl.nl/en/publications/greenhouse-gas-mitigation-scenarios-for-major-emitting-countries.)
  127. Köberle et al., 2015 (Alexandre C. Köberle, David E.H.J. Gernaat, Detlef P. van Vuuren (2015). Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation. Energy, 89, pp. 739-756, doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.energy.2015.05.145.
    Link to PBL-website: http://www.pbl.nl/en/publications/assessing-current-and-future-techno-economic-potential-of-concentrated-solar-power-and-photovoltaic-electricity.
    )
  128. Lauk et al., 2012 (C. Lauk, H. Haberl, K. Erb, S. Gingrich, F. Krausmann (2012). Global socioeconomic carbon stocks in long-lived products 1900-2008. Environmental Research Letters, 7(3), doi: http://dx.doi.org/10.1088/1748-9326/7/3/034023.)
  129. Leclère et al., 2020 (David Leclère, Michael Obersteiner, Mike Barrett, Stuart H. M. Butchart, Abhishek Chaudhary, Adriana De Palma, Fabrice A. J. DeClerck, Moreno Di Marco, Jonathan C. Doelman, Martina Dürauer, Robin Freeman, Michael Harfoot, Tomoko Hasegawa, Stefanie Hellweg, Jelle P. Hilbers, Samantha L. L. Hill, Florian Humpenöder, Nancy Jennings, Tamás Krisztin, Georgina M. Mace, Haruka Ohashi, Alexander Popp, Andy Purvis, Aafke M. Schipper, Andrzej Tabeau, Hugo Valin, Hans van Meijl, Willem-Jan van Zeist, Piero Visconti, Rob Alkemade, Rosamunde Almond, Gill Bunting, Neil D. Burgess, Sarah E. Cornell, Fulvio Di Fulvio, Simon Ferrier, Steffen Fritz, Shinichiro Fujimori, Monique Grooten, Thomas Harwood, Petr Havlík, Mario Herrero, Andrew J. Hoskins, Martin Jung, Tom Kram, Hermann Lotze-Campen, Tetsuya Matsui, Carsten Meyer, Deon Nel, Tim Newbold, Guido Schmidt-Traub, Elke Stehfest, Bernardo B. N. Strassburg, Detlef P. van Vuuren, Chris Ware, James E. M. Watson, Wenchao Wu, Lucy Young (2020). Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 585, pp. 551–556, doi: http://dx.doi.org/https://doi.org/10.1038/s41586-020-2705-y.)
  130. Lehner et al., 2011 (B. Lehner, C.R. Liermann, C. Revenga, C. Vörösmarty, B. Fekete, P. Crouzet, P. Döll, M. Endejan, K. Frenken, J. Magome, C. Nilsson, J.C. Robertson, R. Rödel, N. Sindorf, D. Wisser (2011). High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 9.)
  131. Letourneau et al., 2012 (A. Letourneau, P. H. Verburg, E. Stehfest (2012). A land-use systems approach to represent land-use dynamics at continental and global scales. Environmental Modelling and Software, 33, pp. 61-79, doi: http://dx.doi.org/10.1016/j.envsoft.2012.01.007.
    Link to PBL-website: http://www.pbl.nl/en/publications/2012/a-land-use-systems-approach-to-represent-land-use-dynamics-at-continental-and-global-scales.
    )
  132. Luderer et al., 2017 (G. Luderer, R.C. Pietzcker, S. Carrara, H.S. de Boer, S. Fujimori, N. Johnson, S. Mima, D. Arent (2017). Assessment of wind and solar power in global low-carbon energy scenarios: An introduction. Energy Economics, 64(May 2017), pp. 542-551, doi: http://dx.doi.org/10.1016/j.eneco.2017.03.027.
    Link to PBL-website: http://www.pbl.nl/en/publications/assessment-of-wind-and-solar-power-in-global-low-carbon-energy-scenarios-an-introduction.
    )
  133. Maes et al., 2012 (J. Maes, M.L. Paracchini, G. Zulian, M.B. Dunbar, R. Alkemade (2012). Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biological Conservation, 155, pp. 1-12.)
  134. Mandryk et al., 2015 (M. Mandryk, J.C. Doelman, E. Stehfest (2015). Assessment of global land availability..FOODSECURE Technical paper no. 7.URL: http://www.foodsecure.eu/PublicationDetail.aspx?id=194.
    Link to PBL-website: http://www.pbl.nl/en/publicaties/assessment-of-global-land-availability-land-supply-for-agriculture.
    )
  135. Meinshausen et al., 2011a (M. Meinshausen, S. C. B. Raper, T. M. L. Wigley (2011). Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration. Atmos. Chem. Phys., 11(4), pp. 1417-1456.)
  136. Meinshausen et al., 2011b (M. Meinshausen, T. M. L. Wigley, S. C. B. Raper (2011). Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 2: Applications. Atmospheric Chemistry and Physics, 11(4), pp. 1457-1471.)
  137. Mendoza Beltrán et al., 2011 (A. Mendoza Beltrán, M. G. J. den Elzen, A. F. Hof, D. P. van Vuuren, J. van Vliet (2011). Exploring the bargaining space within international climate negotiations based on political, economic and environmental considerations. Energy Policy, 39(11), pp. 7361-7371, doi: http://dx.doi.org/10.1016/j.enpol.2011.08.065.
    Link to PBL-website: http://www.pbl.nl/en/publications/2011/exploring-the-bargaining-space-within-international-climate-negotiations.
    )
  138. Morée et al., 2013 (Morée A.L., Beusen A.H.W., Bouwman A.F., Willems W.J. (2013). Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century. Global Biogeochemical Cycles, 27, pp. 836-846, doi: http://dx.doi.org/10.1002/gbc.20072.
    Link to PBL-website: http://www.pbl.nl/en/publications/exploring-global-nitrogen-and-phosphorus-flows-in-urban-wastes-during-the-twentieth-century.
    )
  139. Musters et al., submitted (C.J.M. Musters, R.J.T. Verweij, M. Bakkenes, D.P. Faith, S. Ferrier, R. Alkemade (in preparation). Present and future species survival: a new method for local, regional, and global estimations. in preparation; available on request.)
  140. Myhre et al., 2013 (G. Myhre, D. Shindell, F.-M. Breon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, A. Robock T. Nakajima, G. Stephens, T. Takemura and H. Zhang (2013). Anthropogenic and Natural Radiative Forcing.. In: T.F. StockerD. QinG.-K. PlattnerM. TignorS.K. AllenJ. BoschungA. NauelsY. XiaV. BexP.M. Midgley (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York.)
  141. Müller et al., 2016a (C. Müller, E. Stehfest, J. G. Van Minnen, B. Strengers, W. Von Bloh, A. H. W. Beusen, S. Schaphoff, T. Kram, W. Lucht (2016). Drivers and patterns of land biosphere carbon balance reversal. Environmental Research Letters, 11(4), doi: http://dx.doi.org/10.1088/1748-9326/11/4/044002.)
  142. Müller et al., 2016b (Ch. Müller, E. Stehfest, J.G. van Minnen, B. Strengers, W. von Bloh, A. Beusen, S. Schaphoff, T. Kram, W. Lucht (2016). Reversal of the land biosphere carbon balance under climate and land-use change. Environmental Research Letters, 11(4), doi: http://dx.doi.org/http://dx.doi.org/10.1088/1748-9326/11/4/044002.
    Link to PBL-website: http://www.pbl.nl/en/publications/drivers-and-patterns-of-land-biosphere-carbon-balance-reversal.
    )
  143. Nelson et al., 2014 (G. C. Nelson, H. Valin, R.D. Sands, P. Havlík, H. Ahammad, D. Deryng, J. Elliott, S. Fujimori, T. Hasegawa, E. Heyhoe, P. Kyle, M. Von Lampe, H. Lotze-Campen, D. Mason d’Croz, H.van Meijl, D. van der Mensbrugghe, Ch. Müller, A. Popp, R. Robertson, S. Robinson, E. Schmid, C. Schmitz, A.Tabeau, D. Willenbockel (2014). Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 111(9), pp. 3274-3279, doi: http://dx.doi.org/10.1073/pnas.1222465110.)
  144. Newbold et al., 2013 (T. Newbold, J.P.W. Scharlemann, S.H.M. Butchart, Ç. H. Sekercioglu, R. Alkemade, H. Booth, D.W. Purves (2013). Ecological traits affect the response of tropical forest bird species to land-use intensity. Proceedings of the Royal Society B, Biological Sciences, 280(1750).)
  145. Nkonya et al., 2011 (E. Nkonya, N. Gerber, J. von Braun, A. De Pinto (2011). Economics of land degradation - The costs of action versus inaction, IFPRI, International Food Policy Research Institute, Washington D.C.(URL: http://www.ifpri.org/publication/economics-land-degradation; http://www.ifpri.org/sites/default/files/publications/ib68.pdf).)
  146. O'Neill, 2013 (B. O’Neill (2013). Socio-economic observations, scenarios, and their use in LUC models.)
  147. OECD, 2012 (OECD (2012). OECD Environmental outlook to 2050: The consequences of inaction, OECD Publishing, Paris, France.
    Link to PBL-website: http://www.pbl.nl/en/publications/2012/oecd-environmental-outlook-to-2050.
    )
  148. Overmars et al., 2012 (K.P. Overmars, E. Stehfest, A. Tabeau, H. Meijl, van, A. Mendoza Beltrán, T. Kram (2012). Estimating the costs of reducing CO2 emission via avoided deforestation with integrated assessment modeling.15th Annual Conference on Global Economic Analysis: "New Challenges for Global Trade and Sustainable Development".Geneva.Access date: 27-29 June 2012.)
  149. Overmars et al., 2014 (K. P. Overmars, E. Stehfest, A. Tabeau, H. van Meijl, A. M. Beltrán, T. Kram (2014). Estimating the opportunity costs of reducing carbon dioxide emissions via avoided deforestation, using integrated assessment modelling. Land Use Policy, 41, pp. 45-60, doi: http://dx.doi.org/10.1016/j.landusepol.2014.04.015.
    Link to PBL-website: http://www.pbl.nl/en/publications/estimating-opportunity-costs-of-reducing-co2-emissions-via-avoided-deforestation.
    )
  150. PBL, 2011 (PBL (2011). The protein puzzle, PBL Netherlands Environmental Assessment Agency, The Hague. Link to PBL-website: http://www.pbl.nl/en/publications/2011/meat-dairy-and-fish-options-for-changes-in-production-and-consumption.)
  151. PBL, 2012 (PBL (2012). Roads from Rio+20: Pathways to achieve global sustainability goals by 2050, D.P. Van VuurenM.T.J. Kok (eds.), PBL Netherlands Environmental Assessment Agency, The Hague. Link to PBL-website: http://www.pbl.nl/en/publications/2012/roads-from-rio20.)
  152. Palma et al., 2021 (Adriana Palma, Katia Sanchez-Ortiz, Helen R.P Phillips, Andy Purvis (2021). Calculating the Biodiversity Intactness Index: the PREDICTS implementation.URL: https://doi.org/10.5281/ZENODO.5642946)
  153. Pastor et al., 2014 (A.V. Pastor, F. Ludwig, H. Biemans, D. Gerten, P. Kabat (2014). Accounting for environmental flow requirements in global water assessments. Hydrology and Earth System Sciences Discussion, 18, pp. 5041-5059, doi: http://dx.doi.org/10.5194/hess-18-5041-2014.)
  154. Pietzcker et al., 2017 (R. Pietzcker, F. Ueckerdt, S. Carrara, H.S. de Boer, J. Despres, S. Fujimori, N. Johnson, A. Kitous, Y. Scholz, P. Sullivan, G. Luderer (2017). System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches. Energy Economics, 64(May 2017), pp. 583-599, doi: http://dx.doi.org/10.1016/j.eneco.2016.11.018.)
  155. Putz et al., 2012 (F. E. Putz, P. A. Zuidema, T. Synnott, M. Peña-Claros, M. A. Pinard, D. Sheil, J. K. Vanclay, P. Sist, S. Gourlet-Fleury, B. Griscom, J. Palmer, R. Zagt (2012). Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conservation Letters, 5(4), pp. 296-303.)
  156. Rao et al., 2016 (S. Rao, Z. Klimont, J. Leitao, K. Riahi, R. Van Dingenen, L. A. Reis, K. Calvin, F. Dentener, L. Drouet, S. Fujimori, M. Harmsen, G. Luderer, C. Heyes, J. Strefler, M. Tavoni, D. P. Van Vuuren (2016). A multi-model assessment of the co-benefits of climate mitigation for global air quality. Environmental Research Letters, 11(12), doi: http://dx.doi.org/10.1088/1748-9326/11/12/124013.)
  157. Rao et al., 2017 (S. Rao, Z. Klimont, K. Riahi, M. Amann, O. Fricko, P. Havlik, C. Heyes (2017). Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change, 42, pp. 346-358, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.05.012.)
  158. Roelfsema et al., 2013 (M. Roelfsema, M.G.J. den Elzen, A.F. Hof, N. Höhne, N. Braun, H. Fekete, R. Brandsma, J. Larkin, H. Böttcher (2013). Methodology for analysing greenhouse gas emission reduction proposals and national climate policies of major economies, PBL Netherlands Environmental Assessment Agency, Bilthoven, the Netherlands. Link to PBL-website: http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2013-methodology-policy-brief-analysis-of-domestic-climate-policies.pdf.)
  159. Roelfsema et al., 2014 (M. Roelfsema, M. D. Elzen, N. Höhne, A. F. Hof, N. Braun, H. Fekete, H. Böttcher, R. Brandsma, J. Larkin (2014). Are major economies on track to achieve their pledges for 2020? An assessment of domestic climate and energy policies. Energy Policy, 67, pp. 781-796, doi: http://dx.doi.org/10.1016/j.enpol.2013.11.055.
    Link to PBL-website: http://www.pbl.nl/en/publications/are-major-economies-on-track-to-achieve-their-pledges-for-2020.
    )
  160. Rogelj et al., 2016 (Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534, pp. 631-639, doi: http://dx.doi.org/10.1038/nature18307.)
  161. Rolinski et al., 2018 (Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Bodirsky, B. L., Bondeau, A., Boons-Prins, E. R., Bouwman, A. F., Leffelaar, P. A., te Roller, J. A., Schaphoff, S., Thonicke, K. (2018). Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6. Geoscientific Model Development, 11(1), pp. 429-451, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-429-2018.)
  162. Rosenzweig et al., 2013 (C. Rosenzweig, J. Elliott, D. Deryng, A.C. Ruane, Ch. Müller, A. Arneth, K.J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T.A.M. Pugh, E. Schmid, E. Stehfest, H. Yang, J.W. Jones (2013). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, doi: http://dx.doi.org/http://www.pnas.org/content/early/2013/12/13/1222463110.abstract.)
  163. Rusch et al., 2011 (A Rusch, M Valatin-Morison, J.P. Sarthou, J Roger-Estrade (2011). Effects of crop management and lanscape context on insect pest populations and crop damage. Agriculture, Ecosystems & Environment, 166, pp. 118-125, doi: http://dx.doi.org/10.1016/j.agee.2011.05.004.)
  164. S&P, 2017 (S&P Global Market Intelligence (2017). World Electric Power Plants Database, March 2017.Harvard Dataverse.URL: https://doi.org/10.7910/DVN/OKEZ8A)
  165. Schaphoff et al., 2013 (S. Schaphoff, U. Heyder, S. Ostberg, D. Gerten, J. Heinke, W. Lucht (2013). Contribution of permafrost soils to the global carbon budget. Environmental Research Letters, 8(1), pp. 014026, doi: http://dx.doi.org/10.1088/1748-9326/8/1/014026.)
  166. Schaphoff et al., 2018a (Sibyll Schaphoff, Werner von Bloh, Anja Rammig, Kirsten Thonicke, Hester Biemans, Matthias Forkel, Dieter Gerten, Jens Heinke, Jonas Jägermeyr, Jürgen Knauer, Fanny Langerwisch, Wolfgang Lucht, Christoph Müller, Susanne Rolinski, and Katharina Waha (2018). LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description. Geoscientific Model Development, 11, pp. 1343–1375, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-1343-2018.)
  167. Schaphoff et al., 2018b (Sibyll Schaphoff, Matthias Forkel, Christoph Müller, Jürgen Knauer, Werner von Bloh, Dieter Gerten, Jonas Jägermeyr, Wolfgang Lucht, Anja Rammig, Kirsten Thonicke, and Katharina Waha (2018). LPJmL4 – a dynamic global vegetation model with managed land – Part 2: Model evaluation. Geoscientific Model Development, 11, pp. 1377–1403, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-1377-2018.)
  168. Schipper et al., 2020 (Schipper A.M., Hilbers J.P., Meijer J.R., Antão L.H., Benítez-López A., de Jonge M.M.J., Leemans L.H., Scheper E., Alkemade R., Doelman J.C., Mylius S., Stehfest E., van Vuuren D.P., van Zeist W.-J. (2020). Projecting terrestrial biodiversity intactness with GLOBIO 4. Global Change Biology, 26(2), pp. 760-771, doi: http://dx.doi.org/10.1111/gcb.14848.)
  169. Schulp and Alkemade, 2011 (C.J.E. Schulp, R. Alkemade (2011). Geometric and thematic uncertainty in mapping ecosystem services derived from global-scale land cover data. Remote Sensing, 3(9), pp. 2057-2075.)
  170. Schulp et al., 2012 (C. J. E. Schulp, R. Alkemade, K. Klein Goldewijk, K. Petz (2012). Mapping ecosystem functions and services in Eastern Europe using global-scale data sets. International Journal of Biodiversity Science, Ecosystem Services and Management, 8(1-2), pp. 156-168, doi: http://dx.doi.org/10.1080/21513732.2011.645880.
    Link to PBL-website: http://www.pbl.nl/en/publications/2012/mapping-ecosystem-functions-and-services-in-eastern-europe-using-global-scale-data-sets.
    )
  171. Sea around us project, 2013 (Sea around us project (2013). Fisheries, ecosystems and biodiversity.Sea around us project.URL: http://www.seaaroundus.org/)
  172. Shindell et al., 2012 (D. Shindell, J. C. I. Kuylenstierna, E. Vignati, R. Van Dingenen, M. Amann, Z. Klimont, S. C. Anenberg, N. Muller, G. Janssens-Maenhout, F. Raes, J. Schwartz, G. Faluvegi, L. Pozzoli, K. Kupiainen, L. Höglund-Isaksson, L. Emberson, D. Streets, V. Ramanathan, K. Hicks, N. T. K. Oanh, G. Milly, M. Williams, V. Demkine, D. Fowler (2012). Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335(6065), pp. 183-189.)
  173. Smith et al., 2011 (S.J. Smith, J. van Aardenne, Z Klimont, R Andres, AC Volke, S. Delgado Arias (2011). Anthropogenic Sulfur Dioxide Emissions: 1850-2005. Atmospheric Chemistry and Physics, 11(3), pp. 1101-1116.)
  174. Stehfest et al., 2013 (E. Stehfest, M. Berg, G. Woltjer, S. Msangi, H. Westhoek (2013). Options to reduce the environmental effects of livestock production - Comparison of two economic models. Agricultural Systems, 114, pp. 38-53, doi: http://dx.doi.org/10.1016/j.agsy.2012.07.002.
    Link to PBL-website: http://www.pbl.nl/en/publications/2012/options-to-reduce-the-environmental-effects-of-livestock-production-%E2%80%93-comparison-of-two-economic-models.
    )
  175. Stehfest et al., 2014 (E. Stehfest, D.P. van Vuuren, L. Bouwman, T.Kram, R. Alkemade, M. Bakkenes, H. Biemans, A. Bouwman, M. den Elzen, J. Janse, P. Lucas, J. van Minnen, C. Müller, A. Prins (2014). IMAGE 3.0, PBL.
    Link to PBL-website: http://www.pbl.nl/en/publications/integrated-assessment-of-global-environmental-change-with-IMAGE-3.0.
    )
  176. Stehfest et al., 2019 (Elke Stehfest, Willem-Jan van Zeist, Hugo Valin, Petr Havlik, Alexander Popp, Page Kyle, Andrzej Tabeau, Daniel Mason-D’Croz, Tomoko Hasegawa, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Shinichiro Fujimori, Florian Humpenöder, Hermann Lotze-Campen, Hans van Meijl and Keith Wiebe (2019). Key determinants of global land-use projections. Nature Communications, 10, doi: http://dx.doi.org/https://doi.org/10.1038/s41467-019-09945-w.)
  177. Stoorvogel et al., 2017 (J. J. Stoorvogel, M. Bakkenes, A.J.A.M. Temme, N.H. Batjes, B.J.E. ten Brink (2017). S-World: A Global Soil Map for Environmental Modelling. Land Degradation and Development, 28(1), pp. 22-33, doi: http://dx.doi.org/10.1002/ldr.2656.)
  178. Stoorvogel, 2014 (J.J. Stoorvogel (2014). S-world: A global map of soil properties for modeling. In: D. ArrouaysN. McKenzeyJ. HempelA.C. Richer de ForgesA. McBratney (eds.), GlobalSoilMap, basis of the global spatial soil information system. Taylor & Francis Group, London, UK, pp. 227-231.)
  179. Thomson et al., 2011 (A.M. Thomson, K.V. Calvin, S. J. Smith, G.P. Kyle, A.. Volke, P. Patel, S.. Delgado-Arias, B. Bond-Lamberty, M.A. Wise, L.E. Clarke, J.A. Edmonds (2011). RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1-2), pp. 77-94, doi: http://dx.doi.org/10.1007/s10584-011-0151-4.)
  180. UN, 2013 (UN (2013). World Population Prospects, The 2012 Revision, Volume I: Comprehensive Tables, Department of Economic and Social Affairs, Population Division(URL: http://esa.un.org/unpd/wpp/Documentation/pdf/WPP2012_Volume-I_Comprehensive-Tables.pdf).)
  181. UNCCD, 2012 (UNCCD (2012). Zero net land degradation, a sustainable development goal for Rio 20+ to secure the contribution of our planet's land and soil to sustainable development, including food security and poverty eradication.pp 17.UNCCD secretariat.Bonn.Access date: 2012-05-01.URL: http://www.unccd.int/Lists/SiteDocumentLibrary/Rio+20/UNCCD_PolicyBrief_ZeroNetLandDegradation.pdf)
  182. UNEP (2016) (UNEP, PBL contribution M.G.J. den Elzen, J.G.J Olivier, M.R. Roelfsema (2016). The Emissions Gap Report 2016. United Nations Environment, UNEP, UNEP, Nairobi. Link to PBL-website: http://www.pbl.nl/en/publications/unep-emissions-gap-report-2016.)
  183. UNEP, 2011 (UNEP (2011). UNEP Bridging the gap report, United Nations Environment Programme (UNEP), United Nations Environment Programme (UNEP)(URL: http://www.unep.org/publications/ebooks/bridgingemissionsgap/).)
  184. UNEP, 2012 (UNEP (2012). The Emissions Gap Report 2012. A UNEP Synthesis Report, United Nations Environment Programme (UNEP).)
  185. UNEP-INTERPOL, 2012 (UNEP-INTERPOL (2012). Green Carbon, Black Trade: Illegal Logging, Tax Fraud and Laundering in the Worlds Tropical Forests. A Rapid Response Assessment. Nellemann, C. INTERPOL Environmental Crime Programme (eds), United Nations Environment Programme, GRID, Arendal, Norway.)
  186. UNEP-WCMC, 2011 (UNEP-WCMC (2011). The UK national ecosystem assessment: Synthesis of the key findings, UNEP-WCMC, Cambridge, UK.)
  187. UNFCCC (2015) ((2015). Intended Nationally Determined Contributions (INDCs).Access date: Accessed: 29 October, 2015.URL: http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx)
  188. UNFCCC (2015b) ((2015). Paris Agreement. Decision 1/CP.17.UNFCCC document FCCC/CP/2015/L.9/Rev.1.Access date: December 2015.URL: http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf)
  189. UNISDR, 2011 (UNISDR (2011). Global assessment report on disaster risk reduction, UNISDR, United Nations, Geneva, Switzerland.)
  190. Ueckerdt et al., 2016 (F. Ueckerdt, R. Pietzcker, Y. Scholz, D. Stetter, A. Giannousakis, G. Luderer (2016). Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model. Energy Economics, doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.eneco.2016.05.012.)
  191. Van Asselen and Verburg, 2012 (Van Asselen, S. and Verburg P.H. (2012). A land system representation for global assessments and land-use modeling. Global Change Biology, 18, pp. 3125-3148, doi: http://dx.doi.org/10.1111/j.1365-2486.2012.02759.x.)
  192. Van Asselen and Verburg, 2013 (S. Van Asselen, P.H. Verburg (2013). Land cover change or land-use intensification: simulating land system change with a global-scale land change model. Global Change Biology, 19(12), pp. 3648-3667, doi: http://dx.doi.org/10.1111/gcb.12331.)
  193. Van Asselen et al., 2013 (S. Van Asselen, P.H. Verburg, J. Vermaat, J.H. Janse (2013). Drivers of wetland conversions: a global meta-analysis. PLoS ONE, 8, pp. e81292, doi: http://dx.doi.org/10.1371/journal.pone.0081292.)
  194. Van Beek et al., 2011 (L. P. H. van Beek, Y. Wada, M. F. P. Bierkens (2011). Global monthly water stress: 1. Water balance and water availability. Water Resources Research, 47, pp. W07517, doi: http://dx.doi.org/10.1029/2010WR009791.)
  195. Van Beek, 2012 (R. van Beek (2012). Estimating soil hydraulic properties for reconstructed maps of historic land use using pedotransfer functions, Utrecht University (Internal report), The Netherlands.)
  196. Van Bussel, 2011 (L.G.J. van Bussel (2011). From field to globe: Upscaling of crop growth modelling.Ph.D. thesis.pp 212.Wageningen University.The Netherlands.)
  197. Van Meijl et al., 2018 (H. Van Meijl, P. Havlik, H. Lotze-Campen, E. Stehfest, P. Witzke, I.P. Domínguez, B.L. Bodirsky, M. Van Dijk, J. Doelman, T. Fellmann, F. Humpenöder, J.F.L. Koopman, C. Müller, A. Popp, A. Tabeau, H. Valin, W.-J. Van Zeist (2018). Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 13(6), doi: http://dx.doi.org/10.1088/1748-9326/aabdc4.)
  198. Van Ruijven et al., 2011 (B. J. van Ruijven, D. P. van Vuuren, B. J. M. de Vries, M. Isaac, J. P. van der Sluijs, P. L. Lucas, P. Balachandra (2011). Model projections for household energy use in India. Energy Policy, 39(12), pp. 7747-7761, doi: http://dx.doi.org/10.1016/j.enpol.2011.09.021.
    Link to PBL-website: http://www.pbl.nl/en/publications/2011/model-projections-for-household-energy-use-in-india.
    )
  199. Van Ruijven et al., 2012 (B. J. van Ruijven, J. Schers, D. P. van Vuuren (2012). Model-based scenarios for rural electrification in developing countries. Energy, 38(1), pp. 386-397, doi: http://dx.doi.org/10.1016/j.energy.2011.11.037.
    Link to PBL-website: http://www.pbl.nl/en/publications/2012/model-based-scenarios-for-rural-electrification-in-developing-countries.
    )
  200. Van Ruijven et al., 2016 (B. J. Van Ruijven, D. P. Van Vuuren, W. Boskaljon, M. L. Neelis, D. Saygin, M. K. Patel (2016). Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resources, Conservation and Recycling, 112, pp. 15-36, doi: http://dx.doi.org/10.1016/j.resconrec.2016.04.016.)
  201. Van Sluisveld et al., 2021 (Mariësse A.E. van Sluisveld, Harmen Sytze de Boer, Vassilis Daioglou, Andries F.Hof, Detlef P.van Vuuren (2021). A race to zero - Assessing the position of heavy industry in a global net-zero CO2 emissions context. Energy and Climate Change, 2, doi: http://dx.doi.org/https://doi.org/10.1016/j.egycc.2021.100051.)
  202. Van Vliet et al., 2012 (J. van Vliet, M. van den Berg, M. Schaeffer, D. P. van Vuuren, M. den Elzen, A. F. Hof, A. M. Beltran, M. Meinshausen (2012). . Climatic Change, 113(2), pp. 551-561, doi: http://dx.doi.org/10.1007/s10584-012-0458-9.
    Link to PBL-website: http://www.pbl.nl/en/publications/2012/copenhagen-accord-pledges-imply-higher-costs-for-staying-below-2-degree-celsius-warming.
    )
  203. Van Vuuren and Stehfest, 2013 (D. P. van Vuuren, E. Stehfest (2013). If climate action becomes urgent: The importance of response times for various climate strategies. Climatic Change, 121(3), pp. 473-486, doi: http://dx.doi.org/10.1007/s10584-013-0769-5.
    Link to PBL-website: http://www.pbl.nl/en/publications/if-climate-action-becomes-urgent-the-importance-of-response-times-for-various-climate-strategies.
    )
  204. Van Vuuren et al., 2011a (D. P. van Vuuren, E. Stehfest, M. G. J. den Elzen, T. Kram, J. van Vliet, S. Deetman, M. Isaac, K. K. Goldewijk, A. Hof, A. M. Beltran, R. Oostenrijk, B. van Ruijven (2011). . Climatic Change, 109(1), pp. 95-116, doi: http://dx.doi.org/10.1007/s10584-011-0152-3.
    Link to PBL-website: http://www.pbl.nl/en/publications/2011/rcp26-exploring-the-possibility-to-keep-global-mean-temperature-increase-below-2%C2%B0c.
    )
  205. Van Vuuren et al., 2011b (D. P. Van Vuuren, L. F. Bouwman, S. J. Smith, F. Dentener (2011). Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: An assessment of scenarios in the scientific literature. Current Opinion in Environmental Sustainability, 3(5), pp. 359-369, doi: http://dx.doi.org/10.1016/j.cosust.2011.08.014.
    Link to PBL-website: http://www.pbl.nl/en/publications/2011/global-projections-anthropogenic-reactive-nitrogen-emissions-to-the-atmosphere.
    )
  206. Van Vuuren et al., 2012 (D. P. Van Vuuren, K. Riahi, R. Moss, J. Edmonds, A. Thomson, N. Nakicenovic, T. Kram, F. Berkhout, R. Swart, A. Janetos, S. K. Rose, N. Arnell (2012). A proposal for a new scenario framework to support research and assessment in different climate research communities. Global Environmental Change, 22(1), pp. 21-35, doi: http://dx.doi.org/10.1016/j.gloenvcha.2011.08.002.
    Link to PBL-website: http://www.pbl.nl/en/publications/2011/proposal-new-scenario-framework-support-research-and-assessment-in-different-climate-research-communities.
    )
  207. Van Vuuren et al., 2015 (D.P. van Vuuren, T. Kram, E. Stehfest (2015). IMAGE strategy document, PBL Netherlands Environmental Assessment Agency, The Hague. Link to PBL-website: http://www.pbl.nl/en/publications/image-strategy-document-2015-2020.)
  208. Van Vuuren et al., 2017b (D. P. van Vuuren, E. Stehfest, D. E. H. J. Gernaat, J. C. Doelman, M. van den Berg, M. Harmsen, H. S. de Boer, L. F. Bouwman, V. Daioglou, O. Y. Edelenbosch, B. Girod, T. Kram, L. Lassaletta, P. L. Lucas, H. van Meijl, C. Müller, B. J. van Ruijven, S. van der Sluis, A. Tabeau (2017). Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 42, pp. 237-250, doi: http://dx.doi.org/10.1016/j.gloenvcha.2016.05.008.)
  209. Van Vuuren et al., 2018 (D.P. Van Vuuren, E. Stehfest, D.E.H.J. Gernaat, M. Van Den Berg, D.L. Bijl, H.S. De Boer, V. Daioglou, J.C. Doelman, O.Y. Edelenbosch, M. Harmsen, A.F. Hof, M.A.E. Van Sluisveld (2018). Alternative pathways to the 1.5 °c target reduce the need for negative emission technologies. Nature Climate Change, 8(5), pp. 391-397, doi: http://dx.doi.org/10.1038/s41558-018-0119-8.)
  210. Van Vuuren et al., 2021 (Detlef van Vuuren, Elke Stehfest , David Gernaat, Harmen-Sytze de Boer , Vassilis Daioglou , Jonathan Doelman , Oreane Edelenbosch , Mathijs Harmsen , Willem-Jan van Zeist , Maarten van den Berg , Ioannis Dafnomilis , Mariesse van Sluisveld , Andrzej Tabeau , Lotte De Vos , Liesbeth de Waal, Nicole van den Berg , Arthur Beusen , Astrid Bos , Hester Biemans , Lex Bouwman , Hsing-Hsuan Chen, Sebastiaan Deetman , Anteneh Dagnachew , Andries Hof , Hans van Meijl , Johan Meyer, Stratos Mikropoulos, Mark Roelfsema , Aafke Schipper , Heleen Van Soest , Isabela Tagomori , Victhalia Zapata Castillo (2021). The 2021 SSP scenarios of the IMAGE 3.2 model, doi: http://dx.doi.org/https://doi.org/10.31223/X5CG92.)
  211. Van den Berg et al., 2011 (M. van den Berg, J. A. Bakkes, L. Bouwman, M. Jeuken, T. Kram, K. Neumann, D.P. van Vuuren, h. Wilting (2011). EU resource efficiency perspectives in a global context, PBL Netherlands Environmental Assessment Agency, The Hague. Link to PBL-website: http://www.pbl.nl/en/publications/2011/eu-resource-efficiency-perspectives-in-a-global-context.)
  212. Van den Berg et al., 2015 (Maarten van den Berg, Andries Hof, Jasper van Vliet, Detlef van Vuuren (2015). Impact of the choice of emission metric on greenhouse gas abatement and costs. Environmental Research Letters, 10(2).
    Link to PBL-website: http://pblweb10.prolocation.net/en/publications/impact-of-the-choice-of-emission-metric-on-greenhouse-gas-abatement-and-costs.
    )
  213. Van den Berg et al., 2020 (Van den Berg et al. (2020). Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Climatic Change, 162, pp. 1805-1822, doi: http://dx.doi.org/https://link.springer.com/article/10.1007/s10584-019-02368-y.
    Link to PBL-website: https://www.pbl.nl/en/publications/implications-of-various-effort-sharing-approaches-for-national-carbon-budgets-and-emission-pathways.
    )
  214. Van der Esch et al., 2017 (Stefan van der Esch, Ben ten Brink, Elke Stehfest, Michel Bakkenes, Annelies Sewell, Arno Bouwman, Johan Meijer, Henk Westhoek, Maurits van den Berg (2017). Exploring future changes in land use and land condition and the impacts on food, water, climate change and biodiversity: Scenarios for the UNCCD Global Land Outlook, PBL, PBL, Den Haag. Link to PBL-website: https://www.pbl.nl/en/publications/exploring-future-changes-in-land-use.)
  215. Velders et al., 2015 (Guus J. M.Velders, David W. Fahey, John S. Daniel, Stephen O. Andersen, Mack McFarland (2015). Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions. Atmospheric Environment, 123, pp. 200-209, doi: http://dx.doi.org/10.1016/j.atmosenv.2015.10.071.)
  216. Verboom et al., 2014 (J. Verboom, R.P.H. Snep, J. Stouten, R. Pouwels, G. Peer, P.W. Goedhart, M. van Adrichem, R. Alkemade, L. Jones-Walters (2014). Using Minimum Area Requirements (MAR) for assemblages of mammal and bird species in global biodiversity assessments, Wageningen Environmental Research (Alterra), Wageningen Environmental Research (Alterra), Wageningen(URL: https://www.wur.nl/nl/Publicatie-details.htm?publicationId=publication-way-343835313931).)
  217. Visconti et al., 2011 (P. Visconti, R.L. Pressey, D. Giorgini, L. Maiorano, M. Bakkenes, L. Boitani, R. Alkemade, A. Falcucci, F. Chiozza, C. Rondinini (2011). Future hotspots of terrestrial mammal loss. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, pp. 2693-2702, doi: http://dx.doi.org/10.1098/rstb.2011.0105.
    Link to PBL-website: http://www.pbl.nl/en/publications/2011/future-hotspots-of-terrestrial-mammal-loss.
    )
  218. Von Bloh et al., 2018 (Werner von Bloh, Sibyll Schaphoff, Christoph Müller, Susanne Rolinski, Katharina Waha, and Sönke Zaehle (2018). Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geoscientific Model Development, 11, pp. 2789–2812, doi: http://dx.doi.org/https://doi.org/10.5194/gmd-11-2789-2018.)
  219. Von Lampe et al., 2014 (Von Lampe, M., Willenbockel D., Calvin K., Fujimori S., Hasegawa T., Havlik P., Kyle P., Lotze-Campen H., Mason d’Croz D., Nelson G., Sands R., Schmitz C., Tabeau A., Valin H., van der Mensbrugghe D. and van Meijl H. (2014). Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison.. Agricultural Economics, Special Issue on Global Model Intercomparison, 45(1), pp. 3-20, doi: http://dx.doi.org/10.1111/agec.12086.)
  220. WHO/UNICEF, 2012 (WHO/UNICEF (2012). Joint monitoring programme for water and sanitation: 2011 update, World Health Organization/UNICEF.)
  221. WMO/UNEP, 2013 (WMO/UNEP (2013). Integrated assessment of black carbon and tropospheric ozone, WMO/UNEP.)
  222. Wada et al., 2011 (Y. Wada, L. P. H. van Beek, D. Viviroli, H. H. Dürr, R. Weingartner, M. F. P. Bierkens (2011). Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research, 47, pp. W07518, doi: http://dx.doi.org/10.1029/2010WR009792.)
  223. Waha et al., 2012 (K. Waha, L.G.J. van Bussel, C. Müller, A. Bondeau (2012). Climate-driven simulation of global crop sowing dates. Global Ecology and Biogeography, 21(2), pp. 247-259, doi: http://dx.doi.org/10.1111/j.1466-8238.2011.00678.x.)
  224. Ward et al., 2013 (P. J. Ward, B. Jongman, F. Sperna Weiland, A. A. Bouwman, R. van Beek, M.F.P. Bierkens, W. Ligtvoet, H. C. Winsemius (2013). Assessing flood risk at the global scale: model setup, results, and sensitivity. Environmental Research Letters, 8, pp. 8044019, doi: http://dx.doi.org/10.1088/1748-9326/8/4/044019.)
  225. Westhoek et al., in preparation (H. Westhoek, E. Stehfest, M. Berg van den, G Woltjer (in preparation). Effects on global agricultural greenhouse gas emissions from changes in EU diets and husbandry systems. Animals - in preparation; available on request.)
  226. Winsemius et al., 2012 (H. C. Winsemius, L. P. H. Van Beek, B. Jongman, P. J. Ward, A. A. Bouwman (2012). A framework for global river flood risk assessments. Hydrology and Earth System Sciences Discussions, 9(8), pp. 9611-9659.)
  227. Woltjer et al., 2011 (G.B. Woltjer, M. Kuiper, H. van Meijl (2011). Chapter 2: MAGNET, The agricultural world in equations: An overview of the main models used at LEI. LEI, The Hague.)
  228. Woltjer et al., 2014 (G.B. Woltjer, M. Kuiper, A. Kavallari, H. van Meijl, J. Powell, M. Rutten, L. Shutes, A. Tabeau (2014). , LEI, The Hague.)
  229. Woltjer, 2011 (G.B. Woltjer (2011). Meat consumption, production and land use: model implementation and scenarios, WOT Natuur and Milieu, Wageningen(URL: http://www.wotnatuurenmilieu.wur.nl/NL/publicaties/Werkdocumenten/).)

View (previous 750 | next 750) (20 | 50 | 100 | 250 | 500)